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Scenario

• Driving a car from 

origin to destination

• Route is fixed

• Need to arrive at the 

destination before 

certain time (e.g., 

deliver or pick up a

parcle at scheduled 

time, attend an 

appointment, etc.)

Origin
Destination

Introduction: Deterministic Eco-driving
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Problem/Objective: 
How to drive the car, 

so as to 

• Arrive at the 

destination on time, 

while

• Consuming minimal 

amount of fuel Origin
Destination

Origin Des.

Distance = 𝑆

Travel time ≤ 𝑇

Introduction: Deterministic Eco-driving
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Origin DestinationDistance = 𝑆 Travel time ≤ 𝑇

Speed 
limit

Gradient 𝜃

Fuel consumption rate 𝐹𝑅 𝑣, 𝑎 (gram per second)

• 𝐹𝑅 𝒗, 𝒂 = 𝐶1 + 𝐶2𝒗max 𝒂 + 𝐶3𝒗
𝟐 + 𝐶4 cos 𝜃 + 𝐶5 sin 𝜃 , 0

• 𝑣: speed; 𝑎: acceleration; 𝐶1~𝐶5: parameters

60 30 50

Factors considered in eco-driving

Introduction: Deterministic Eco-driving
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Solving the deterministic eco-driving problem, we can get a speed 

profile that 
Speed limit

Gradient

Desired speed 
profile

Origin Des.

• Guarantees the 

vehicle reaching 

destination on time,

• Minimizes the fuel 

consumption

Introduction: Deterministic Eco-driving
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• Movement of our vehicle can be blocked by other vehicles in front

• Our vehicle cannot drive faster than traffic speed (usually uncertain)

• How to solve eco-driving under uncertain traffic speed?

Origin Destination

Introduction: Eco-driving under Uncertain Traffic Speed
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1. Propose a new model to solve the deterministic eco-driving 

problem much more efficiently (by converting a non-convex 

program to a mixed-integer linear program)

2. Formulate the eco-driving problem under uncertain traffic 

speed as stochastic optimization problems

3. Solve the stochastic optimization problems in Step 2 using 

sample average approximation (SAA)

What We Did in This Research
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Origin 𝑠 = 0 Des. (𝑠 = 𝑆)Distance = 𝑆 Travel time ≤ 𝑇

Gradient 𝜃 𝑠

Location 𝑠

𝑣 𝑠 =
d𝑠

𝑑𝑡
⇒ d𝑡 =

1

𝑣 𝑠
d𝑠 ⇒

• At location 𝑠, denote clock time as 𝑡(𝑠) and speed as 𝑣 𝑠

Acceleration 𝑎 𝑠 =
d𝑣 𝑠

d𝑡 𝑠
=
d𝑣 𝑠

d𝑠
𝑣 𝑠 =

d 𝑣 𝑠
2

2d𝑠

Total trip time = න
0

𝑆

d𝑡 = න
0

𝑆 1

𝑣 𝑠
d𝑠

Deterministic Eco-driving Model
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min
𝑣 𝑠 ,𝑎 𝑠 :𝑠∈ 0,𝑆

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

s.t.
Optimal control 
formulation

Deterministic Eco-driving Model
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min
𝑣 𝑠 ,𝑎 𝑠 :𝑠∈ 0,𝑆

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

𝑆: length of the journey

𝑠: location

𝑣 𝑠 : speed at location s

𝑎 𝑠 : acceleration at location s

𝐹𝑅 𝑣, 𝑎 : fuel assumption rate

Deterministic Eco-driving Model

s.t.

Total fuel consumption of the trip

d𝑡 =
1

𝑣 𝑠
d𝑠
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min
𝑣 𝑠 ,𝑎 𝑠 :𝑠∈ 0,𝑆

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

𝑆: length of the journey

𝑠: location

𝑣 𝑠 : speed at location s

Trip time constraint

Deterministic Eco-driving Model

s.t.

d𝑡 =
1

𝑣 𝑠
d𝑠
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min
𝑣 𝑠 ,𝑎 𝑠 :𝑠∈ 0,𝑆

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

𝑣 𝑠 : speed at location s

ത𝑉 𝑠 : speed limit at location s

휀: small positive number

Speed limit constraint

Deterministic Eco-driving Model

s.t.
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min
𝑣 𝑠 ,𝑎 𝑠 :𝑠∈ 0,𝑆

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

Accl. capacity

Deterministic Eco-driving Model

s.t.

𝑎 𝑠 : acceleration at location s

𝑎 & ത𝑎: lower & upper bound of accl.
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min
𝑣 𝑠 ,𝑎 𝑠 :𝑠∈ 0,𝑆

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆
𝑉0 & 𝑉𝑆: desired speed at origin & des.

Deterministic Eco-driving Model

s.t.
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min
𝑣 𝑠 ,𝑎 𝑠 :𝑠∈ 0,𝑆

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

Optimal control 
formulation

Origin Des.Distance = 𝑆

Discretize 𝑆 into 𝑛 uniform segments. 

Length of each segment Δ𝑠 = Τ𝑆 𝑛

𝑣𝑘 , 𝑎𝑘𝑣𝑘−1, 𝑎𝑘−1𝑣0, 𝑎0 𝑣𝑛, 𝑎𝑛

1st segment k-th⋯

⋯ ⋯

n-th

Solution Method – Discretization

s.t.
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min
𝑣 𝑠 ,𝑎 𝑠

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δ𝑠

𝑣𝑘


𝑘=0

𝑛−1Δ𝑠

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠
, 𝑘 = 0,1,⋯ , 𝑛 − 1

휀 ≤ 𝑣𝑘 ≤ ത𝑉𝑘 , 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

s.t.Optimal control 
formulation

Non-convex 
program

Solution Method – Non-Convex Programming

s.t.
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min
𝑣 𝑠 ,𝑎 𝑠

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δ𝑠

𝑣𝑘


𝑘=0

𝑛−1Δ𝑠

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠
, 𝑘 = 0,1,⋯ , 𝑛 − 1

휀 ≤ 𝑣𝑘 ≤ ത𝑉𝑘 , 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

s.t.

Solution Method – Non-Convex Programming

s.t.
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min
𝑣 𝑠 ,𝑎 𝑠

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δ𝑠

𝑣𝑘


𝑘=0

𝑛−1Δ𝑠

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠
, 𝑘 = 0,1,⋯ , 𝑛 − 1

휀 ≤ 𝑣𝑘 ≤ ത𝑉𝑘 , 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

s.t.

Solution Method – Non-Convex Programming

s.t.
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min
𝑣 𝑠 ,𝑎 𝑠

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δ𝑠

𝑣𝑘


𝑘=0

𝑛−1Δ𝑠

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠
, 𝑘 = 0,1,⋯ , 𝑛 − 1

휀 ≤ 𝑣𝑘 ≤ ത𝑉𝑘 , 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

s.t.

Solution Method – Non-Convex Programming

s.t.
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min
𝑣 𝑠 ,𝑎 𝑠

න
0

𝑆

𝐹𝑅 𝑣 𝑠 , 𝑎 𝑠
1

𝑣 𝑠
d𝑠

න
0

𝑆 1

𝑣 𝑠
d𝑠 ≤ 𝑇

𝑎 𝑠 =
d 𝑣 𝑠

2

2d𝑠
, 𝑠 ∈ 0, 𝑆

휀 ≤ 𝑣 𝑠 ≤ ത𝑉 𝑠 , 𝑠 ∈ 0, 𝑆

𝑎 ≤ 𝑎 𝑠 ≤ ത𝑎, 𝑠 ∈ 0, 𝑆

𝑣 0 = 𝑉0, 𝑣 𝑆 = 𝑉𝑆

min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δ𝑠

𝑣𝑘


𝑘=0

𝑛−1Δ𝑠

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠
, 𝑘 = 0,1,⋯ , 𝑛 − 1

휀 ≤ 𝑣𝑘 ≤ ത𝑉𝑘 , 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

s.t.

Solution Method – Non-Convex Programming

s.t.
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min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δs

𝑣𝑘


𝑘=0

𝑛−1Δs

𝑣𝑘
≤ 𝑇

𝒂𝒌 =
𝒗𝒌+𝟏
𝟐 − 𝒗𝒌

𝟐

𝟐𝚫𝒔
, 𝑘 = 0,1,⋯ , 𝑛 − 1

휀 ≤ 𝑣𝑘 ≤ ത𝑉𝑘 , 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

s.t.
Non-convex 
program

Solution Method – Non-Convex Programming

This non-convex program 

can be solved by:

• Dynamic programming

• Nonlinear programing

Issues:

• Computation speed

• Global optimality
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min
𝐸𝑘,𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝟐𝑬𝒌, 𝑎𝑘
Δs

𝟐𝑬𝒌


𝑘=0

𝑛−1 Δs

𝟐𝑬𝒌
≤ 𝑇

𝑎𝑘 =
𝑬𝒌+𝟏 − 𝑬𝒌

Δ𝑠

Τ𝜺𝟐 𝟐 ≤ 𝑬𝒌 ≤ Τഥ𝑽𝒌
𝟐 𝟐

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

𝑬𝟎 = Τ𝑽𝟎
𝟐 𝟐 , 𝑬𝒏 = Τ𝑽𝒏

𝟐 𝟐

min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝒗𝒌, 𝑎𝑘
Δs

𝒗𝒌


𝑘=0

𝑛−1 Δs

𝒗𝒌
≤ 𝑇

𝑎𝑘 =
𝒗𝒌+𝟏
𝟐 − 𝒗𝒌

𝟐

2Δ𝑠
, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝜺 ≤ 𝒗𝒌 ≤ ഥ𝑽𝒌, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝒗𝟎 = 𝑽𝟎, 𝒗𝒏 = 𝑽𝑺

s.t.
Non-convex 
program

Solution Method – Mixed Integer Linear Programming (1)

s.t.

Let 𝐸𝑘 =
1

2
𝑣𝑘
2

𝑣𝑘 = 2𝐸𝑘
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min
𝐸𝑘,𝑎𝑘


𝑘=0

𝑛−1

𝑭𝑹 𝟐𝑬𝒌, 𝒂𝒌
𝛥𝑠

2𝐸𝑘


𝑘=0

𝑛−1 Δs

2𝐸𝑘
≤ 𝑇

𝑎𝑘 =
𝐸𝑘+1 − 𝐸𝑘

Δ𝑠

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

Τ휀2 2 ≤ 𝐸𝑘 ≤ Τത𝑉𝑘
2 2

𝐸0 = Τ𝑉0
2 2 , 𝐸𝑛 = Τ𝑉𝑛

2 2

Solution Method – Mixed Integer Linear Programming (2)

s.t.

Substitute
𝐹𝑅 𝑣, 𝑎 = 𝐶1 + 𝐶2𝑣max{𝑎 + 𝐶3𝑣

2 +
+𝐶4 cos 𝜃 + 𝐶5 sin 𝜃 , 0}

𝛥𝑠

𝑘=0

𝑛−1
𝐶1

2𝐸𝑘
+ 𝐶2max 𝑎𝑘 + 2𝐶3𝐸𝑘 + 𝐶4 cos 𝜃𝑘 + 𝐶5 sin 𝜃𝑘 , 0
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min
𝐸𝑘,𝑎𝑘

Δ𝑠
𝑘=0

𝑛−1 𝐶1

2𝐸𝑘
+ 𝐶2𝐦𝐚𝐱 𝒂𝒌 + 𝟐𝑪𝟑𝑬𝒌 + 𝑪𝟒 𝐜𝐨𝐬𝜽𝒌 + 𝑪𝟓 𝐬𝐢𝐧 𝜽𝒌 , 𝟎


𝑘=0

𝑛−1 Δ𝑠

2𝐸𝑘
≤ 𝑇

𝑎𝑘 =
𝐸𝑘+1 − 𝐸𝑘

Δ𝑠

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

Τ휀2 2 ≤ 𝐸𝑘 ≤ Τത𝑉𝑘
2 2

𝐸0 = Τ𝑉0
2 2 , 𝐸𝑛 = Τ𝑉𝑛

2 2

Solution Method – Mixed Integer Linear Programming (3)

s.t.
Replaced by new variable 𝑦𝑘, plus additional 

constraints below

𝑦𝑘 ≥ 𝑎𝑘 + 2𝐶3𝐸𝑘 + 𝐶4 cos 𝜃𝑘 + 𝐶5 sin 𝜃𝑘

𝑦𝑘 ≥ 0
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min
𝐸𝑘,𝑎𝑘

Δs
𝑘=0

𝑛−1 𝐶1

2𝐸𝑘
+ 𝐶2𝑦𝑘


𝑘=0

𝑛−1 Δs

2𝐸𝑘
≤ 𝑇

𝑎𝑘 =
𝐸𝑘+1 − 𝐸𝑘

Δ𝑠

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

Τ휀2 2 ≤ 𝐸𝑘 ≤ Τത𝑉𝑘
2 2

𝐸0 = Τ𝑉0
2 2 , 𝐸𝑛 = Τ𝑉𝑛

2 2

𝑦𝑘 ≥ 𝑎𝑘 + 2𝐶3𝐸𝑘 + 𝐶4 cos 𝜃𝑘 + 𝐶5 sin 𝜃𝑘 , 𝑦𝑘 ≥ 0

Solution Method – Mixed Integer Linear Programming (4)

s.t. To linearize 
1

2𝐸𝑘
, we approximate it by a

piecewise affine function 𝒇𝑷𝑾𝑨 𝑬𝒌
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Solution Method – Piecewise Affine Function

𝐸𝑘

𝜆1, 𝜆2, 𝜆3, 𝛾1, 𝛾2, 𝛾3 are 

predefined parameters

𝑓𝑃𝑊𝐴 𝐸𝑘 = ቐ

𝜆1𝐸𝑘 + 𝛾1 , for 𝐸min ≤ 𝐸𝑘 ≤ 𝐸1
𝜆2𝐸𝑘 + 𝛾2 , for 𝐸1 < 𝐸𝑘 ≤ 𝐸2
𝜆3𝐸𝑘 + 𝛾3 , for 𝐸2 ≤ 𝐸𝑘 ≤ 𝐸max

1

2𝐸𝑘

𝜆1𝐸𝑘 + 𝛾1

𝜆2𝐸𝑘 + 𝛾2

𝜆3𝐸𝑘 + 𝛾3

More pieces

⇓
More accurate 

approximation
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min
𝐸𝑘,𝑎𝑘

Δs
𝑘=0

𝑛−1

𝐶1 ⋅ 𝒇𝑷𝑾𝑨 𝑬𝒌 + 𝐶2𝑦𝑘


𝑘=0

𝑛−1

Δs ⋅ 𝒇𝑷𝑾𝑨 𝑬𝒌 ≤ 𝑇

𝑎𝑘 =
𝐸𝑘+1 − 𝐸𝑘

Δ𝑠

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

Τ휀2 2 ≤ 𝐸𝑘 ≤ Τത𝑉𝑘
2 2

𝐸0 = Τ𝑉0
2 2 , 𝐸𝑛 = Τ𝑉𝑛

2 2

𝑦𝑘 ≥ 𝑎𝑘 + 2𝐶3𝐸𝑘 + 𝐶4 𝑐𝑜𝑠 𝜃𝑘 + 𝐶5 𝑠𝑖𝑛 𝜃𝑘 , 𝑦𝑘 ≥ 0

Solution Method – Mixed Integer Linear Programming (5)

s.t.

𝑓𝑃𝑊𝐴 𝐸𝑘 = ቐ

𝜆1𝐸𝑘 + 𝛾1 , for 𝐸min ≤ 𝐸𝑘 ≤ 𝐸1
𝜆2𝐸𝑘 + 𝛾2 , for 𝐸1 < 𝐸𝑘 ≤ 𝐸2
𝜆3𝐸𝑘 + 𝛾3 , for 𝐸2 ≤ 𝐸𝑘 ≤ 𝐸max

Still nonlinear
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𝑓𝑃𝑊𝐴 𝐸𝑘 = −𝜆3𝑧1,𝑘 + 𝜆2 − 𝜆3 𝑧2,𝑘 + 𝜆1 − 𝜆2 + 𝜆3 𝑧3,𝑘 − 𝛾3𝛿1,𝑘
+ 𝛾2 − 𝛾3 𝛿2,𝑘 + 𝛾1 − 𝛾2 + 𝛾3 𝛿3,𝑘 + 𝜆3𝐸𝑘 + 𝛾3

𝐸𝑘 ≤ 𝐸𝑚𝑎𝑥 − 𝐸𝑖 1 − 𝛿𝑖,𝑘 + 𝐸𝑖 , 𝑖 ∈ 1,2

𝐸𝑘 ≥ 𝐸𝑖 + 𝜇 + 𝐸𝑚𝑖𝑛 − 𝐸𝑖 − 𝜇 𝛿𝑖,𝑘 , 𝑖 ∈ 1,2

−𝛿𝑖,𝑘 + 𝛿3,𝑘 ≤ 0 , 𝑖 ∈ 1,2

𝛿1,𝑘 + 𝛿2,𝑘 − 𝛿3,𝑘 ≤ 1

𝑧𝑗,𝑘 ≤ 𝐸𝑚𝑎𝑥𝛿𝑗,𝑘 , 𝑗 ∈ 1,2,3

𝑧𝑗,𝑘 ≥ 𝐸𝑚𝑖𝑛𝛿𝑗,𝑘 , 𝑗 ∈ 1,2,3

𝑧𝑗,𝑘 ≤ 𝐸𝑘 − 𝐸𝑚𝑖𝑛 1 − 𝛿𝑗,𝑘 , 𝑗 ∈ 1,2,3

𝑧𝑗,𝑘 ≥ 𝐸𝑘 − 𝐸𝑚𝑎𝑥 1 − 𝛿𝑗,𝑘 , 𝑗 ∈ 1,2,3

Linearizing the Piecewise Affine Function 

𝑓𝑃𝑊𝐴 𝐸𝑘 = ቐ

𝜆1𝐸𝑘 + 𝛾1 , for 𝐸min ≤ 𝐸𝑘 ≤ 𝐸1
𝜆2𝐸𝑘 + 𝛾2 , for 𝐸1 < 𝐸𝑘 ≤ 𝐸2
𝜆3𝐸𝑘 + 𝛾3 , for 𝐸2 ≤ 𝐸𝑘 ≤ 𝐸max

s.t. 𝑧𝑗,𝑘: new continuous variables

𝛿𝑗,𝑘: new binary variables

𝜇: sufficiently small constant
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• Case setting

• Distance 𝑆 = 600𝑚, discretized to 30 segments

• Travel time budget 𝑇 = 61𝑠

• Solution methods compared

• DP: Dynamic programming on the non-convex program

• NLP: Nonlinear programming on the non-convex program

• MILP (mixed integer linear program): 
1

2𝐸𝑘
linearized to 50 pieces

• Programmed in Python

• NLP and MILP solved by Gurobi 9.0

Case Study: Comparing Different Solution Methods
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Trip

duration 

(s)

Fuel

used

(g)

Computing 

time

(s)

NLP 61.00 113.48 1338

MILP 60.97 113.49 0.30

DP 60.85 114.10 62

• DP: Dynamic programming

• NLP: Nonlinear programming

• MILP: Mixed-inter linear programming

Case Study: Different Solution Methods (𝑇 = 61s)
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• Movement of our vehicle can be blocked by other vehicles in front

• Our vehicle cannot drive faster than traffic speed (usually uncertain)

• How to solve eco-driving under uncertain traffic speed?

Origin Destination

Recall: Uncertain Traffic Speed
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• If the realized traffic speed is lower than the desired speed, driver has to 

follow traffic speed and cannot follow the desired speed

• This increases travel time and leads to late arrival at the destination

Eco-driving under Uncertain Traffic Speed

Location

Speed
Range of 
uncertain 
traffic speed

Desired speed profile

32



Recall: Deterministic Eco-driving Model

min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δs

𝑣𝑘


𝑘=0

𝑛−1Δs

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠

휀 ≤ 𝑣𝑘 ≤ ഥ𝑽𝒌, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

s.t.

• The uncertain traffic speed serves 

as speed limits on the vehicle

• So we assume the speed limits 

ഥ𝑽𝒌 to be random variables with 

known distribution
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𝑷𝒓𝒐𝒃 𝒗𝒌 ≤ ഥ𝑽𝒌 ≥ 𝟏 − 𝜶, ∀𝒌

𝑣𝑘 ≥ 휀

min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δs

𝑣𝑘


𝑘=0

𝑛−1Δs

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠

휀 ≤ 𝒗𝒌 ≤ ഥ𝑽𝒌, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

Stochastic Eco-driving: Model 1

• Chance constraint: At each location of 

the trip, the probably that the desired 

speed is achievable is ≥ 1 − 𝛼

s.t.

ቐ

• Can be converted to the following 

deterministic constraint using the 

cumulative distribution function 𝐹𝑘(⋅)

𝒗𝒌 ≤ 𝑭𝒌
−𝟏 𝜶 , ∀𝒌

random
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min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δs

𝑣𝑘


𝑘=0

𝑛−1Δs

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠

휀 ≤ 𝒗𝒌 ≤ ഥ𝑽𝒌, 𝑘 = 0,1,⋯ , 𝑛 − 1

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

Stochastic Eco-driving: Model 1

• Pro: deterministic optimization, 

easy to solve

• Con: does not reflect/consider the 

impact on actual travel time and 

fuel consumption

s.t.

휀 ≤ 𝒗𝒌 ≤ 𝑭𝒌
−𝟏 𝜶 , ∀𝒌

Replaced by
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min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δs

𝑣𝑘


𝑘=0

𝑛−1Δs

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠

휀 ≤ 𝒗𝒌 ≤ ഥ𝑽𝒌

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

Stochastic Eco-driving: Model 2

s.t.

• Define our vehicle’s real speed

𝑣𝑘
𝑟𝑒𝑎𝑙 = min 𝑣𝑘 , ഥ𝑽𝒌

Desired 
speed

Random
traffic speed

36



min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δs

𝑣𝑘


𝑘=0

𝑛−1Δs

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠

휀 ≤ 𝒗𝒌 ≤ ഥ𝑽𝒌

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

Stochastic Eco-driving: Model 2

s.t.

• Our vehicle’s real speed

𝑣𝑘
𝑟𝑒𝑎𝑙 = min 𝑣𝑘 , ഥ𝑽𝒌

𝑃𝑟𝑜𝑏 
𝑘=0

𝑛−1 Δs

𝑣𝑘
𝑟𝑒𝑎𝑙 ≤ 𝑇 ≥ 1 − 𝛼

min
𝑣𝑘, 𝑎𝑘

𝔼 
𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘
𝑟𝑒𝑎𝑙 , 𝑎𝑘

𝑟𝑒𝑎𝑙 Δs

𝑣𝑘

𝑎𝑘
𝑟𝑒𝑎𝑙 =

𝑣𝑘+1
𝑟𝑒𝑎𝑙 2

− 𝑣𝑘
𝑟𝑒𝑎𝑙 2

2Δ𝑠
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min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δs

𝑣𝑘


𝑘=0

𝑛−1Δs

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠

휀 ≤ 𝒗𝒌 ≤ ഥ𝑽𝒌

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

Stochastic Eco-driving: Model 2

s.t.

𝑃𝑟𝑜𝑏 
𝑘=0

𝑛−1 Δs

𝑣𝑘
𝑟𝑒𝑎𝑙 ≤ 𝑇 ≥ 1 − 𝛼

• Chance constraint: The probability 
that the actual trip time being ≤ 𝑇
is ≥ 1 − 𝛼

• Our vehicle’s real speed

𝑣𝑘
𝑟𝑒𝑎𝑙 = min 𝑣𝑘 , ഥ𝑽𝒌
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min
𝑣𝑘, 𝑎𝑘


𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘 , 𝑎𝑘
Δs

𝑣𝑘


𝑘=0

𝑛−1Δs

𝑣𝑘
≤ 𝑇

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠

휀 ≤ 𝒗𝒌 ≤ ഥ𝑽𝒌

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

Stochastic Eco-driving: Model 2

s.t.
min
𝑣𝑘, 𝑎𝑘

𝔼 
𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘
𝑟𝑒𝑎𝑙 , 𝑎𝑘

𝑟𝑒𝑎𝑙 Δs

𝑣𝑘
𝑟𝑒𝑎𝑙

𝑎𝑘
𝑟𝑒𝑎𝑙 =

𝑣𝑘+1
𝑟𝑒𝑎𝑙 2

− 𝑣𝑘
𝑟𝑒𝑎𝑙 2

2Δ𝑠

• Minimize the expected actual fuel 

consumption evaluated using the 

real speed and real acceleration

• Our vehicle’s real speed

𝑣𝑘
𝑟𝑒𝑎𝑙 = min 𝑣𝑘 , ഥ𝑽𝒌
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𝑚𝑖𝑛
𝑣𝑘,𝑎𝑘,𝑥𝑘

𝔼
𝑘=0

𝑛−1

𝐹𝑅 𝑣𝑘
𝑟𝑒𝑎𝑙, 𝑎𝑘

𝑟𝑒𝑎𝑙 𝛥𝑠

𝑣𝑘
𝑟𝑒𝑎𝑙

𝑣𝑘
𝑟𝑒𝑎𝑙 = min 𝑣𝑘 , ത𝑉𝑘

𝑎𝑘
𝑟𝑒𝑎𝑙 =

𝑣𝑘+1
𝑟𝑒𝑎𝑙 2

− 𝑣𝑘
𝑟𝑒𝑎𝑙 2

2𝛥𝑠

𝑎𝑘 =
𝑣𝑘+1
2 − 𝑣𝑘

2

2Δ𝑠

휀 ≤ 𝑣𝑘

𝑎 ≤ 𝑎𝑘 ≤ ത𝑎

Stochastic Eco-driving: Model 2 (Relaxed Form)

s.t.


𝑘=0

𝑛−1

𝑥𝑘 = 𝑇

𝑣𝑘𝑥𝑘 ≥ Δ𝑠, ∀𝑘

𝑃𝑟𝑜𝑏 ത𝑉𝑘𝑥𝑘 ≥ Δ𝑠 ≥ 1 − 𝛼, ∀𝑘

𝑣0 = 𝑉0, 𝑣𝑛 = 𝑉𝑆

• Model 2 is reformulated to the stochastic optimization problem below with relaxed 

chance constraint, and solved using Sample Average Approximation (SAA)

Relaxed chance 
constraint
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• Case setting

• Distance 𝑆 = 600𝑚, discretized to 30 segments

• Travel time budget 𝑇 = 65𝑠

• Distribution of traffic speed: log-normal

• Chance constraint 𝛼 = 0.02, 0.05, 0.1

Case Study: Stochastic Eco-driving Models
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Case Study: Stochastic Eco-driving Model 1

Smaller 𝛼 → Tighter chance constraint
→ Lower desired speed

• Chance constraint:   𝑃𝑟𝑜𝑏 𝑣𝑘 ≤ ത𝑉𝑘 ≥ 1 − 𝛼, ∀𝑘

• Computing

time: 0.3s
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Case Study: Stochastic Eco-driving Model 2

• Chance constraint:  𝑃𝑟𝑜𝑏 σ𝑘=0
𝑛−1 Δs

𝑣𝑘
𝑟𝑒𝑎𝑙 ≤ 𝑇 ≥ 1 − 𝛼

Smaller 𝛼 → Tighter chance constraint
→ Lower desired speed

• SAA (sample average 

approximation):

100 scenarios

• Computing time: 

220𝑠 ~ 350𝑠
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• Deterministic eco-driving is solved using mean traffic speed

Case Study: Benefit of Stochastic Eco-driving Models

Speed trajectories 

obtained by different 

eco-driving models, 

under 𝛼 = 0.05
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• We generate 1000 new scenarios of actual traffic speed

• Under each of these 1000 scenarios, calculate the actual trip time and actual fuel 

consumption of the speed profiles generated by different models

Case Study: Benefit of Stochastic Eco-driving Models

𝛼 Deter.
Stochastic 

Model 1

Stochastic 

Model  2

0.02 126.0 129.9 125.5

0.05 126.0 120.3 118.9

0.10 126.0 117.9 117.5

𝛼 Deter.
Stochastic 

Model 1

Stochastic 

Model  2

0.02 48.9% 35.0% 0

0.05 48.9% 55.6% 0

0.10 48.9% 78.2% 1.3%

❖ Average fuel consumption (g) over 

1000 scenarios

❖ Percentage of trips exceeding travel 

time budget over 1000 scenarios
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• Solved the deterministic eco-driving problem much more efficiently by 

converting the non-convex program to a mixed-integer linear program

• Proposed two stochastic optimization formulations for the eco-driving problem 

under uncertain traffic speed

• Stochastic eco-driving models can mitigate the impact of uncertain traffic speed 

on eco-driving. It leads to lower fuel consumption and/or lower frequency of trip 

time violation, compared with the deterministic eco-driving model
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