

Optimal Driving for Vehicle Fuel Economy under Traffic Speed Uncertainty

Hongbo Ye

Department of Electrical Engineering Hong Kong Polytechnic University

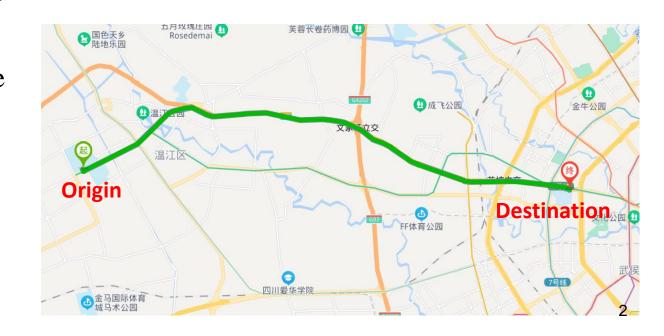
Joint work with

- Fuliang Wu, Ming Dong & Dali Zhang (SJTU)
- Tolga Bektaş (U of Liverpool)

[Wu, F., Bektaş, T., Dong, M., Ye, H., Zhang, D., 2021. Optimal driving for vehicle fuel economy under traffic speed uncertainty. Transportation Research Part B 154, 175-206.]

Scenario

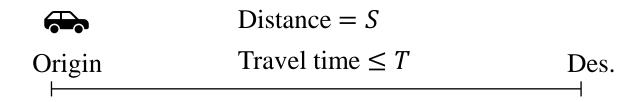
- Driving a car from origin to destination
- Route is fixed
- Need to arrive at the destination before certain time (e.g., deliver or pick up a parcle at scheduled time, attend an appointment, etc.)



Problem/Objective:

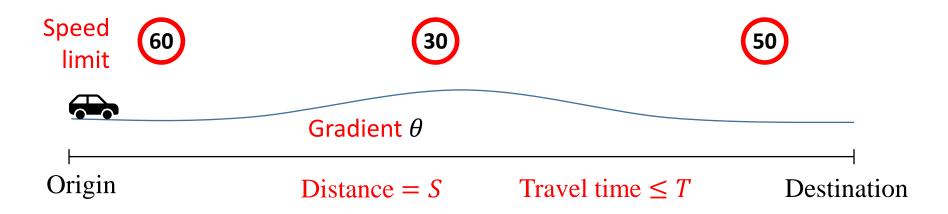
How to drive the car, so as to

- Arrive at the destination on time, while
- Consuming minimal amount of fuel





<u>Factors</u> considered in eco-driving



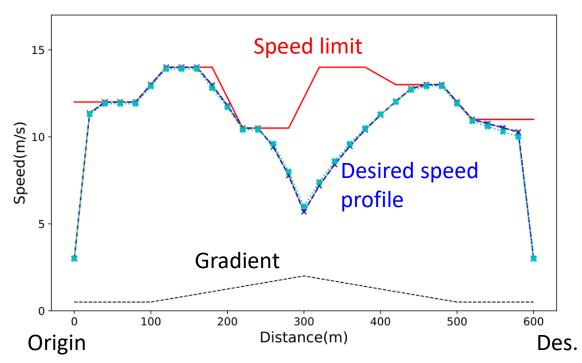
Fuel consumption rate FR(v, a) (gram per second)

- $FR(\mathbf{v}, \mathbf{a}) = C_1 + C_2 \mathbf{v} \max{\{\mathbf{a} + C_3 \mathbf{v}^2 + C_4 \cos \theta + C_5 \sin \theta, 0\}}$
- v: speed; a: acceleration; $C_1 \sim C_5$: parameters

Solving the deterministic eco-driving problem, we can get a speed

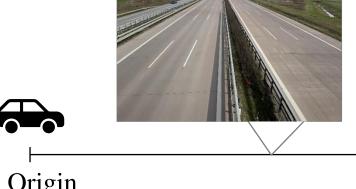
profile that

- Guarantees the vehicle reaching destination on time,
- Minimizes the fuel consumption



Introduction: Eco-driving under Uncertain Traffic Speed

- Movement of our vehicle can be blocked by other vehicles in front
- Our vehicle cannot drive faster than traffic speed (usually uncertain)
- How to solve eco-driving under uncertain traffic speed?



Origin

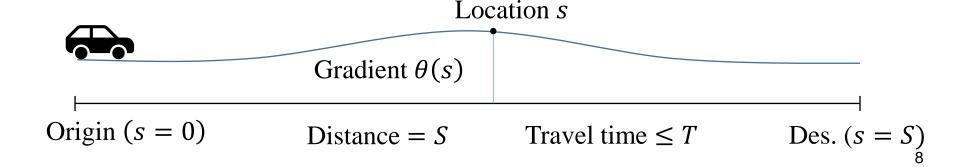
Destination

What We Did in This Research

- 1. Propose a new model to solve the deterministic eco-driving problem much more efficiently (by converting a non-convex program to a mixed-integer linear program)
- 2. Formulate the eco-driving problem under uncertain traffic speed as stochastic optimization problems
- 3. Solve the stochastic optimization problems in Step 2 using sample average approximation (SAA)

• At location s, denote clock time as t(s) and speed as v(s)

$$v(s) = \frac{\mathrm{d}s}{\mathrm{d}t} \Rightarrow \mathrm{d}t = \frac{1}{v(s)} \, \mathrm{d}s \Rightarrow \begin{cases} \text{Acceleration } a(s) = \frac{\mathrm{d}v(s)}{\mathrm{d}t(s)} = \frac{\mathrm{d}v(s)}{\mathrm{d}s} v(s) = \frac{\mathrm{d}\left(v(s)\right)^2}{2\mathrm{d}s} \\ \text{Total trip time} = \int_0^S \mathrm{d}t = \int_0^S \frac{1}{v(s)} \, \mathrm{d}s \end{cases}$$



$$\min_{v(s),a(s):s\in[0,S]} \int_0^S FR(v(s),a(s)) \frac{1}{v(s)} ds$$

s.t.
$$\int_0^S \frac{1}{v(s)} \, \mathrm{d}s \le T$$

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

$$\varepsilon \le v(s) \le \overline{V}(s), s \in [0, S]$$

$$a \le a(s) \le \bar{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

$$\min_{v(s),a(s):s\in[0,S]} \int_0^S FR(v(s),a(s)) \frac{1}{v(s)} ds$$

$$s.t. \int_0^S \frac{1}{v(s)} \, \mathrm{d}s \le T$$

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

$$\varepsilon \le v(s) \le \overline{V}(s), s \in [0, S]$$

$$a \le a(s) \le \bar{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

S: length of the journey

s: location

v(s): speed at location s

a(s): acceleration at location s

FR(v, a): fuel assumption rate

$$\mathrm{d}t = \frac{1}{v(s)}\,\mathrm{d}s$$

$$\min_{v(s),a(s):s\in[0,S]} \int_0^S FR(v(s),a(s)) \frac{1}{v(s)} ds$$

s.t.
$$\int_0^s \frac{1}{v(s)} ds \le T$$
 Trip time constraint

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

$$\varepsilon \le v(s) \le \bar{V}(s), s \in [0, S]$$

$$a \le a(s) \le \bar{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

S: length of the journey

s: location

v(s): speed at location s

$$\mathrm{d}t = \frac{1}{v(s)}\,\mathrm{d}s$$

$$\min_{v(s),a(s):s\in[0,S]} \int_0^S FR(v(s),a(s)) \frac{1}{v(s)} ds$$

$$\text{s.t. } \int_0^S \frac{1}{v(s)} \, \mathrm{d}s \le T$$

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

$$\varepsilon \le v(s) \le \bar{V}(s), s \in [0, S]$$

[0,S] Speed limit constraint

v(s): speed at location s

 ε : small positive number

 $\overline{V}(s)$: speed limit at location s

$$a \le a(s) \le \bar{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

$$\min_{v(s),a(s):s\in[0,S]} \int_0^S FR(v(s),a(s)) \frac{1}{v(s)} ds$$

$$\text{s.t. } \int_0^S \frac{1}{v(s)} \, \mathrm{d}s \le T$$

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

$$\varepsilon \le v(s) \le \overline{V}(s), s \in [0, S]$$

$$\underline{a} \le a(s) \le \overline{a}, s \in [0, S]$$

Accl. capacity

$$v(0) = V_0, v(S) = V_S$$

a(s): acceleration at location s

 $\underline{a} \& \overline{a}$: lower & upper bound of accl.

$$\min_{v(s),a(s):s\in[0,S]} \int_0^S FR(v(s),a(s)) \frac{1}{v(s)} ds$$

$$\text{s.t. } \int_0^S \frac{1}{v(s)} \, \mathrm{d}s \le T$$

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

$$\varepsilon \le v(s) \le \bar{V}(s), s \in [0, S]$$

$$a \le a(s) \le \bar{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

 $V_0 \& V_S$: desired speed at origin & des.

Solution Method – Discretization

$$\min_{v(s),a(s):s\in[0,S]} \int_0^S FR(v(s),a(s)) \frac{1}{v(s)} ds$$
 Optimal control formulation

$$\text{s.t. } \int_0^S \frac{1}{v(s)} \, \mathrm{d}s \le T$$

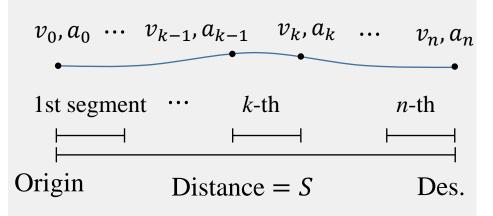
$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

$$\varepsilon \le v(s) \le \overline{V}(s), s \in [0, S]$$

$$a \le a(s) \le \bar{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

Discretize *S* into *n* uniform segments. Length of each segment $\Delta s = S/n$



$$\min_{v(s),a(s)} \int_0^S FR(v(s),a(s)) \frac{1}{v(s)} ds$$

s.t.
$$\int_0^S \frac{1}{v(s)} ds \le T$$
 Optimal control formulation

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

$$\varepsilon \le v(s) \le \overline{V}(s), s \in [0, S]$$

$$a \le a(s) \le \bar{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

s.t.
$$\sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}, k = 0, 1, \dots, n-1$$

$$\varepsilon \leq v_k \leq \bar{V}_k, k = 0, 1, \cdots, n-1$$

$$a \leq a_k \leq \overline{a}, k = 0, 1, \dots, n-1$$

$$v_0 = V_0$$
, $v_n = V_S$

$$\min_{v(s),a(s)} \int_0^S FR(v(s),a(s)) \frac{1}{v(s)} ds$$

s.t.
$$\int_0^S \frac{1}{v(s)} \, \mathrm{d}s \le T$$

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

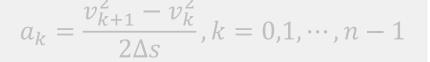
$$\varepsilon \le v(s) \le \bar{V}(s), s \in [0, S]$$

$$a \le a(s) \le \bar{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

$$\text{s.t. } \sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$



$$\varepsilon \leq v_k \leq \bar{V}_k, k = 0, 1, \cdots, n-1$$

$$a \leq a_k \leq \bar{a}, k = 0, 1, \cdots, n-1$$

$$v_0 = V_0, v_n = V_S$$

$$\min_{v(s),a(s)} \int_0^s FR(v(s),a(s)) \frac{1}{v(s)} ds \qquad \min_{v_k,a_k} \sum_{k=0}^{n-1} FR(v_k,a_k) \frac{\Delta s}{v_k}$$

$$\text{s.t. } \int_0^S \frac{1}{v(s)} \, \mathrm{d}s \le T$$

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

$$\varepsilon \le v(s) \le \overline{V}(s), s \in [0, S]$$

$$a \le a(s) \le \bar{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

$$\text{s.t.} \quad \sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}, k = 0, 1, \dots, n-1$$

$$\varepsilon \leq v_k \leq \overline{V}_k, k = 0, 1, \cdots, n-1$$

$$\underline{a} \le a_k \le \bar{a}, k = 0, 1, \cdots, n - 1$$

$$v_0 = V_0, v_n = V_S$$

$$\min_{v(s),a(s)} \int_0^s FR(v(s),a(s)) \frac{1}{v(s)} ds \qquad \min_{v_k,a_k} \sum_{k=0}^{n-1} FR(v_k,a_k) \frac{\Delta s}{v_k}$$

s.t.
$$\int_0^S \frac{1}{v(s)} \, \mathrm{d}s \le T$$

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

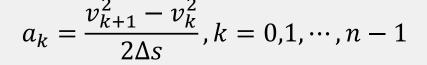
$$\varepsilon \le v(s) \le \bar{V}(s), s \in [0, S]$$

$$\underline{a} \le a(s) \le \overline{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

$$\text{s.t. } \sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$



$$\varepsilon \leq v_k \leq \bar{V}_k, k = 0, 1, \cdots, n-1$$

$$a \leq a_k \leq \bar{a}, k = 0, 1, \cdots, n-1$$

$$v_0 = V_0, v_n = V_S$$

$$\min_{v(s),a(s)} \int_0^s FR(v(s),a(s)) \frac{1}{v(s)} ds \qquad \min_{v_k,a_k} \sum_{k=0}^{n-1} FR(v_k,a_k) \frac{\Delta s}{v_k}$$

s.t.
$$\int_0^S \frac{1}{v(s)} \, \mathrm{d}s \le T$$

$$a(s) = \frac{d(v(s))^2}{2ds}, s \in [0, S]$$

$$\varepsilon \le v(s) \le \overline{V}(s), s \in [0, S]$$

$$a \le a(s) \le \bar{a}, s \in [0, S]$$

$$v(0) = V_0, v(S) = V_S$$

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

$$\text{s.t. } \sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}, k = 0, 1, \dots, n-1$$

$$\varepsilon \leq v_k \leq \overline{V}_k$$
, $k = 0, 1, \dots, n-1$

$$a \le a_k \le \overline{a}, k = 0, 1, \cdots, n-1$$

$$v_0 = V_0$$
, $v_n = V_S$

This non-convex program can be solved by:

- Dynamic programming
- Nonlinear programing

Issues:

- Computation speed
- Global optimality

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$
s.t.
$$\sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$\sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$\sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$
Position
$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}, k = 0, 1, \dots, n-1$$

$$\varepsilon \le v_k \le \overline{V}_k, k = 0, 1, \dots, n-1$$

$$\underline{a} \le a_k \le \overline{a}, k = 0, 1, \dots, n-1$$

$$v_0 = V_0, v_n = V_S$$

Solution Method – Mixed Integer Linear Programming (1)

 $v_k = \sqrt{2E_k}$

$$\min_{E_k, a_k} \sum_{k=0}^{n-1} FR\left(\sqrt{2E_k}, a_k\right) \frac{\Delta s}{\sqrt{2E_k}}$$

$$\text{s.t. } \sum_{k=0}^{n-1} \frac{\Delta s}{\sqrt{2E_k}} \le T$$

$$a_k = \frac{E_{k+1} - E_k}{\Delta s}$$

$$\varepsilon^2/2 \leq E_k \leq \overline{V}_k^2/2$$

$$\underline{a} \le a_k \le \bar{a}$$

$$E_0 = V_0^2/2$$
 , $E_n = V_n^2/2$

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(\boldsymbol{v_k}, a_k) \frac{\Delta s}{\boldsymbol{v_k}}$$

s.t.
$$\sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

Let
$$E_k = \frac{1}{2}v_k^2$$
 $a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}, k = 0, 1, \dots, n-1$

$$\varepsilon \leq v_k \leq \overline{V}_k, k = 0, 1, \cdots, n-1$$

$$\underline{a} \le a_k \le \overline{a}, k = 0, 1, \cdots, n-1$$

$$v_0 = V_0$$
, $v_n = V_S$

Solution Method – Mixed Integer Linear Programming (2)

$$\min_{E_k, a_k} \sum_{k=0}^{n-1} FR(\sqrt{2E_k}, a_k) \frac{\Delta s}{\sqrt{2E_k}}$$

Substitute
$$FR(v,a) = C_1 + C_2 v \max\{a + C_3 v^2 + C_4 \cos \theta + C_5 \sin \theta, 0\}$$

$$\text{s.t. } \sum_{k=0}^{n-1} \frac{\Delta s}{\sqrt{2E_k}} \le T$$

$$a_k = \frac{E_{k+1} - E_k}{\Delta s}$$

$$a_k = \frac{E_{k+1} - E_k}{\Delta s} \qquad \Delta s \sum_{k=0}^{n-1} \left[\frac{C_1}{\sqrt{2E_k}} + C_2 \max\{a_k + 2C_3E_k + C_4\cos\theta_k + C_5\sin\theta_k, 0\} \right]$$

$$\underline{a} \le a_k \le \overline{a}$$

$$\varepsilon^2/2 \le E_k \le \bar{V}_k^2/2$$

$$E_0 = V_0^2/2$$
, $E_n = V_n^2/2$

Solution Method – Mixed Integer Linear Programming (3)

$$\min_{E_k, a_k} \Delta s \sum_{k=0}^{n-1} \left[\frac{C_1}{\sqrt{2E_k}} + C_2 \frac{\max\{a_k + 2C_3E_k + C_4\cos\theta_k + C_5\sin\theta_k, 0\}}{2C_3E_k} \right]$$

$$\text{s.t. } \sum_{k=0}^{n-1} \frac{\Delta s}{\sqrt{2E_k}} \le T$$

$$a_k = \frac{E_{k+1} - E_k}{\Delta s}$$

$$\underline{a} \le a_k \le \overline{a}$$

$$\varepsilon^2/2 \le E_k \le \bar{V}_k^2/2$$

$$E_0 = V_0^2/2$$
 , $E_n = V_n^2/2$

Replaced by new variable y_k , plus additional constraints below

$$y_k \ge a_k + 2C_3E_k + C_4\cos\theta_k + C_5\sin\theta_k$$
$$y_k \ge 0$$

Solution Method – Mixed Integer Linear Programming (4)

$$\min_{E_k, a_k} \Delta s \sum_{k=0}^{n-1} \left[\frac{C_1}{\sqrt{2E_k}} + C_2 y_k \right]$$

$$\text{s.t. } \sum_{k=0}^{n-1} \frac{\Delta s}{\sqrt{2E_k}} \le T$$

$$a_k = \frac{E_{k+1} - E_k}{\Delta s}$$

$$\underline{a} \le a_k \le \overline{a}$$

$$\varepsilon^2/2 \le E_k \le \bar{V}_k^2/2$$

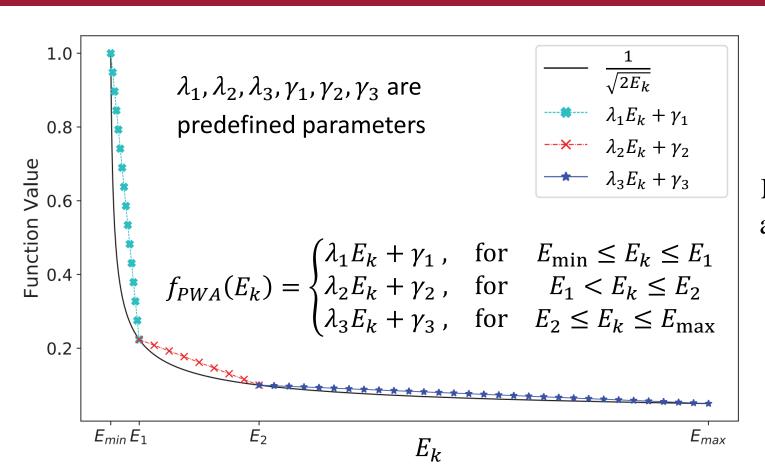
$$E_0 = V_0^2/2$$
, $E_n = V_n^2/2$

$$y_k \ge a_k + 2C_3E_k + C_4\cos\theta_k + C_5\sin\theta_k$$
, $y_k \ge 0$

To linearize $\frac{1}{\sqrt{2E_k}}$, we approximate it by a

piecewise affine function $f_{PWA}(E_k)$

Solution Method – Piecewise Affine Function



More pieces

↓

More accurate approximation

Solution Method – Mixed Integer Linear Programming (5)

$$\min_{E_k, a_k} \Delta s \sum_{k=0}^{n-1} [C_1 \cdot \boldsymbol{f}_{PWA}(\boldsymbol{E}_k) + C_2 y_k]$$

$$\sum_{k=0}^{n-1} \Delta_{S} \cdot \boldsymbol{f}_{PWA}(\boldsymbol{E}_{k}) \leq T$$

$$a_k = \frac{E_{k+1} - E_k}{\Delta s}$$

$$\underline{a} \le a_k \le \bar{a}$$

$$\varepsilon^2/2 \le E_k \le \bar{V}_k^2/2$$

$$E_0 = V_0^2/2$$
 , $E_n = V_n^2/2$

$$y_k \ge a_k + 2C_3E_k + C_4\cos\theta_k + C_5\sin\theta_k$$
, $y_k \ge 0$

$$f_{PWA}(E_k) = \begin{cases} \lambda_1 E_k + \gamma_1, & \text{for } E_{\min} \leq E_k \leq E_1 \\ \lambda_2 E_k + \gamma_2, & \text{for } E_1 < E_k \leq E_2 \\ \lambda_3 E_k + \gamma_3, & \text{for } E_2 \leq E_k \leq E_{\max} \end{cases}$$

Linearizing the Piecewise Affine Function

$$f_{PWA}(E_k) = -\lambda_3 z_{1,k} + (\lambda_2 - \lambda_3) z_{2,k} + (\lambda_1 - \lambda_2 + \lambda_3) z_{3,k} - \gamma_3 \delta_{1,k} + (\gamma_2 - \gamma_3) \delta_{2,k} + (\gamma_1 - \gamma_2 + \gamma_3) \delta_{3,k} + \lambda_3 E_k + \gamma_3$$

s.t.
$$E_k \leq (E_{max} - E_i)(1 - \delta_{i,k}) + E_i$$
, $i \in \{1,2\}$
 $E_k \geq E_i + \mu + (E_{min} - E_i - \mu)\delta_{i,k}$, $i \in \{1,2\}$
 $-\delta_{i,k} + \delta_{3,k} \leq 0$, $i \in \{1,2\}$
 $\delta_{1,k} + \delta_{2,k} - \delta_{3,k} \leq 1$

$$z_{j,k} \le E_{max}\delta_{j,k}$$
, $j \in \{1,2,3\}$
 $z_{j,k} \ge E_{min}\delta_{j,k}$, $j \in \{1,2,3\}$

$$z_{j,k} \le E_k - E_{min}(1 - \delta_{j,k}), j \in \{1,2,3\}$$

$$z_{j,k} \ge E_k - E_{max}(1 - \delta_{j,k}), j \in \{1,2,3\}$$

 $z_{j,k}$: new continuous variables $\delta_{j,k}$: new binary variables μ : sufficiently small constant

$$f_{PWA}(E_k) = \begin{cases} \lambda_1 E_k + \gamma_1, & \text{for } E_{\min} \le E_k \le E_1 \\ \lambda_2 E_k + \gamma_2, & \text{for } E_1 < E_k \le E_2 \\ \lambda_3 E_k + \gamma_3, & \text{for } E_2 \le E_k \le E_{\max} \end{cases}$$

Case Study: Comparing Different Solution Methods

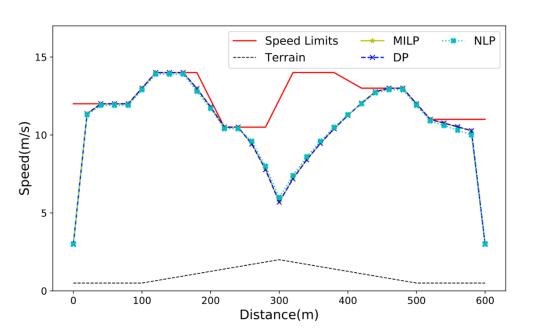
- Case setting
 - Distance S = 600m, discretized to 30 segments
 - Travel time budget T = 61s
- Solution methods compared
 - DP: Dynamic programming on the non-convex program
 - NLP: Nonlinear programming on the non-convex program
 - MILP (mixed integer linear program): $\frac{1}{\sqrt{2E_k}}$ linearized to 50 pieces
 - Programmed in Python
 - NLP and MILP solved by Gurobi 9.0

Case Study: Different Solution Methods (T = 61s)

• DP: Dynamic programming

• NLP: Nonlinear programming

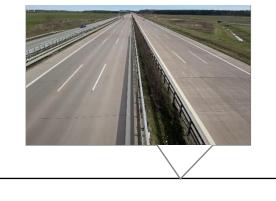
• MILP: Mixed-inter linear programming



	Trip duration (s)	Fuel used (g)	Computing time (s)
NLP	61.00	113.48	1338
MILP	60.97	113.49	0.30
DP	60.85	114.10	62

Recall: Uncertain Traffic Speed

- Movement of our vehicle can be blocked by other vehicles in front
- Our vehicle cannot drive faster than traffic speed (usually uncertain)
- How to solve eco-driving under uncertain traffic speed?

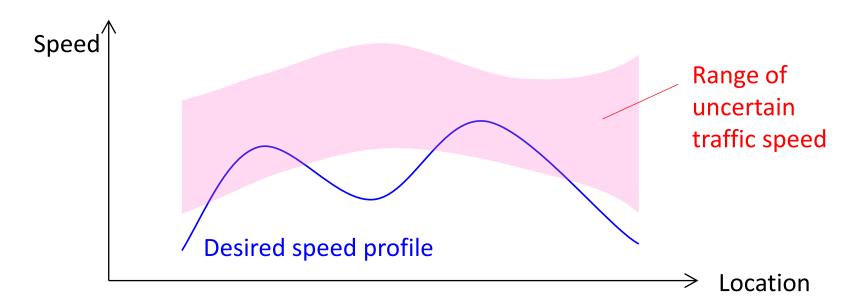


Origin

Destination

Eco-driving under Uncertain Traffic Speed

- If the realized traffic speed is lower than the desired speed, driver has to follow traffic speed and cannot follow the desired speed
- This increases travel time and leads to late arrival at the destination



Recall: Deterministic Eco-driving Model

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

s.t.
$$\sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}$$

$$\varepsilon \leq v_k \leq \overline{V}_k, k = 0, 1, \dots, n-1$$

$$\underline{a} \le a_k \le \bar{a}$$

$$v_0 = V_0, v_n = V_S$$

- The uncertain traffic speed serves as speed limits on the vehicle
 - So we assume the speed limits \overline{V}_k to be random variables with known distribution

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

s.t.
$$\sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}$$
 random

$$\varepsilon \leq v_k \leq \overline{V}_k, k = 0, 1, \dots, n-1$$

$$\underline{a} \le a_k \le \overline{a}$$

$$v_0 = V_0$$
, $v_n = V_S$

Chance constraint: At each location of the trip, the probably that the desired speed is achievable is $\geq 1 - \alpha$

$$\begin{cases} Prob(v_k \leq \overline{V}_k) \geq 1 - \alpha, \forall k \\ v_k \geq \varepsilon \end{cases}$$

Can be converted to the following deterministic constraint using the cumulative distribution function $F_k(\cdot)$

$$v_k \leq F_k^{-1}(\alpha), \forall k$$

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

s.t.
$$\sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}$$

$$\varepsilon \leq v_k \leq \overline{V}_k, k = 0, 1, \cdots, n-1$$

$$\varepsilon \leq v_k \leq F_k^{-1}(\alpha), \forall k$$

$$\underline{a} \le a_k \le \overline{a}$$

$$v_0 = V_0$$
, $v_n = V_S$

- **Pro**: deterministic optimization, easy to solve
- Con: does not reflect/consider the impact on actual travel time and fuel consumption

Replaced by

$$\varepsilon \leq v_k \leq F_k^{-1}(\alpha)$$
, $\forall k$

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

s.t.
$$\sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}$$

$$\varepsilon \leq v_k \leq \overline{V}_k$$

$$a \le a_k \le \bar{a}$$

$$v_0 = V_0$$
, $v_n = V_S$

• Define our vehicle's real speed

$$v_k^{real} = \min\{v_k, \overline{V}_k\}$$

Desired Random speed traffic speed

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

• Our vehicle's real speed
$$v_k^{real} = \min\{v_k, \overline{V}_k\}$$

$$\text{s.t. } \sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}$$

$$\varepsilon \leq v_k \leq \overline{V_k}$$

$$\underline{a} \le a_k \le \overline{a}$$

$$v_0 = V_0, v_n = V_S$$

$$\min_{v_k, a_k} \mathbb{E}\left[\sum_{k=0}^{n-1} FR(v_k^{real}, a_k^{real}) \frac{\Delta s}{v_k}\right]$$

$$(22^{real})^2 \qquad (22^{real})^2$$

$$a_k^{real} = \frac{\left(v_{k+1}^{real}\right)^2 - \left(v_k^{real}\right)^2}{2\Delta s}$$

$$Prob\left(\sum_{k=0}^{n-1} \frac{\Delta s}{v_k^{real}} \le T\right) \ge 1 - \alpha$$

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

• Our vehicle's real speed $v_k^{real} = \min\{v_k, \overline{V}_k\}$

$$\text{s.t. } \sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}$$

$$\varepsilon \leq v_k \leq \overline{V_k}$$

$$\underline{a} \le a_k \le \overline{a}$$

$$v_0 = V_0$$
, $v_n = V_S$

• Chance constraint: The probability that the actual trip time being $\leq T$ is $\geq 1 - \alpha$

$$Prob\left(\sum_{k=0}^{n-1} \frac{\Delta s}{v_k^{real}} \le T\right) \ge 1 - \alpha$$

$$\min_{v_k, a_k} \sum_{k=0}^{n-1} FR(v_k, a_k) \frac{\Delta s}{v_k}$$

s.t.
$$\sum_{k=0}^{n-1} \frac{\Delta s}{v_k} \le T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s}$$

$$\varepsilon \leq v_k \leq \overline{V_k}$$

$$a \le a_k \le \bar{a}$$

$$v_0 = V_0$$
, $v_n = V_S$

• Our vehicle's real speed $v_k^{real} = \min\{v_k, \overline{V}_k\}$

$$\min_{v_k, a_k} \mathbb{E}\left[\sum_{k=0}^{n-1} FR(v_k^{real}, a_k^{real}) \frac{\Delta s}{v_k^{real}}\right]$$

$$a_k^{real} = \frac{\left(v_{k+1}^{real}\right)^2 - \left(v_k^{real}\right)^2}{2\Delta s}$$

 Minimize the expected actual fuel consumption evaluated using the real speed and real acceleration

Stochastic Eco-driving: Model 2 (Relaxed Form)

• Model 2 is reformulated to the stochastic optimization problem below with relaxed chance constraint, and solved using Sample Average Approximation (SAA)

$$\min_{v_k, a_k, x_k} \mathbb{E} \sum_{k=0}^{n-1} FR(v_k^{real}, a_k^{real}) \frac{\Delta s}{v_k^{real}}$$
s.t.
$$v_k^{real} = \min\{v_k, \bar{V}_k\}$$

$$a_k^{real} = \frac{\left(v_{k+1}^{real}\right)^2 - \left(v_k^{real}\right)^2}{2\Delta s} \qquad \sum_{k=0}^{n-1} x_k = T$$

$$a_k = \frac{v_{k+1}^2 - v_k^2}{2\Delta s} \qquad v_k x_k \ge \Delta s, \forall k \qquad \text{Constraint}$$

$$\varepsilon \le v_k \qquad Prob(\bar{V}_k x_k \ge \Delta s) \ge 1 - \alpha, \forall k$$

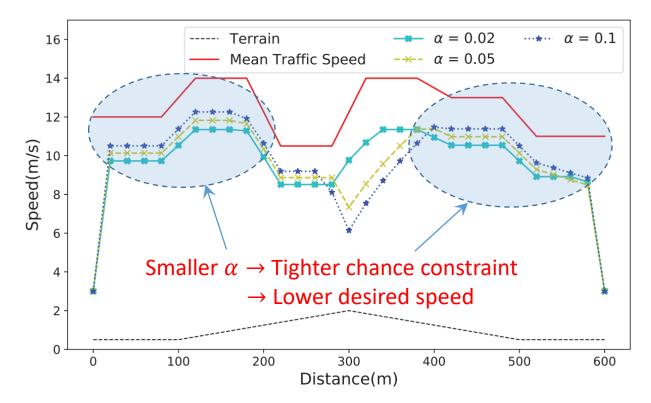
$$\underline{a} \le a_k \le \bar{a} \qquad v_0 = V_0, v_n = V_S$$

Case Study: Stochastic Eco-driving Models

- Case setting
 - Distance S = 600m, discretized to 30 segments
 - Travel time budget T = 65s
 - Distribution of traffic speed: log-normal
 - Chance constraint $\alpha = 0.02, 0.05, 0.1$

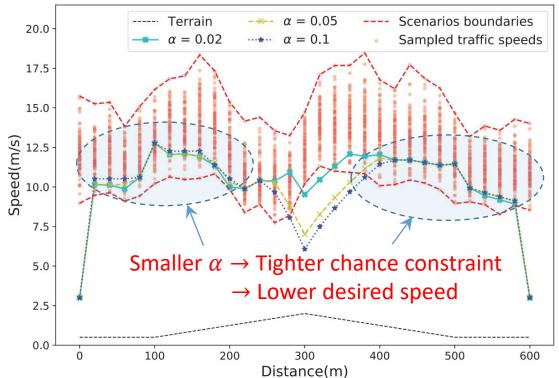
Case Study: Stochastic Eco-driving Model 1

- Chance constraint: $Prob(v_k \le \overline{V}_k) \ge 1 \alpha, \forall k$
- Computing time: 0.3s



Case Study: Stochastic Eco-driving Model 2

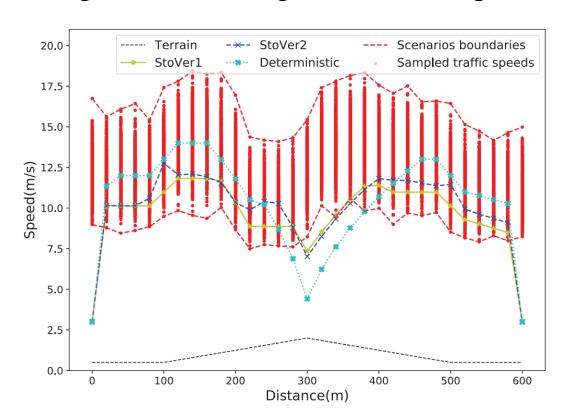
- Chance constraint: $Prob\left(\sum_{k=0}^{n-1} \frac{\Delta s}{v_k^{real}} \le T\right) \ge 1 \alpha$
- SAA (sample average approximation):100 scenarios
- Computing time: $220s \sim 350s$



Case Study: Benefit of Stochastic Eco-driving Models

• Deterministic eco-driving is solved using mean traffic speed

Speed trajectories obtained by different eco-driving models, under $\alpha = 0.05$



Case Study: Benefit of Stochastic Eco-driving Models

- We generate 1000 new scenarios of actual traffic speed
- Under each of these 1000 scenarios, calculate the actual trip time and actual fuel consumption of the speed profiles generated by different models
- ❖ Average fuel consumption (g) over 1000 scenarios

α	Deter.	Stochastic Model 1	Stochastic Model 2
0.02	126.0	129.9	125.5
0.05	126.0	120.3	118.9
0.10	126.0	117.9	117.5

❖ Percentage of trips exceeding travel time budget over 1000 scenarios

α	Deter.	Stochastic Model 1	Stochastic Model 2
0.02	48.9%	35.0%	0
0.05	48.9%	55.6%	0
0.10	48.9%	78.2%	1.3%

Conclusions

- Solved the deterministic eco-driving problem much more efficiently by converting the non-convex program to a mixed-integer linear program
- Proposed two stochastic optimization formulations for the eco-driving problem under uncertain traffic speed
- Stochastic eco-driving models can mitigate the impact of uncertain traffic speed on eco-driving. It leads to lower fuel consumption and/or lower frequency of trip time violation, compared with the deterministic eco-driving model

Reference

Wu, F., Bektaş, T., Dong, M., Ye, H., Zhang, D., 2021. Optimal driving for vehicle fuel economy under traffic speed uncertainty. Transportation Research Part B 154, 175-206.

46