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Abstract 

This paper studies how the advanced traveler information affects the stability of the 

day-to-day flow evolution of a transportation system. Two scenarios are investigated 

regarding the types of information provided, where one type is the historical travel time and 

the other the forecasted travel time. Given the information, travelers are assumed to form 

their own perception/prediction on travel time and further choose the routes. The day-to-day 

dynamics under the two above-mentioned scenarios are formulated using both discrete-time 

and continuous-time models, and their respective local stability is analyzed. Findings from 

the discrete-time and continuous-time models are compared, which show that: (i) the 

discrete-time models behave in a more complex fashion than the continuous-time models, 

and (ii) the conclusions drawn from the discrete-time modeling and continuous-time 

modeling can be consistent, different or contradictory, which depends on the system 

parameters, network structure, the travel time functions and the route choice probability 

functions. 
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1. Introduction 

In the transportation networks, travelers make trip decisions based on their experience and 

knowledge about the network. With the development of information and data technologies, 

nowadays, the traffic conditions can be collected and processed almost in real time. Such 

information can be accessed by the potential trip makers in a fast and comprehensive manner, 

in the form of Advanced Traveler Information (ATI), via e.g. their smart devices. The ATI 

can include historical, real-time and predicted/forecasted travel information, and can easily 

influence travelers’ day-to-day travel decisions including modes, routes, and departure time. 

Studying how these travel decisions are affected by ATI would help justify the benefits of 

ATI, and help predict the daily travel demand. The latter is important for the day-to-day 

traffic management and control, such as road tolls (Guo, 2013; Guo et al., 2016; Ye et al., 

2015) and signal settings (Smith and Mounce, 2011; Xiao and Lo, 2015). Among the various 

travel decisions, this paper focuses on route choice. 

 

With the implementation of ATI systems (ATISs), travelers’ route choice will be increasingly 

dependent on the ATI, which means the ATI provided will have a great impact on the 

evolution of the traffic demands and flows from day to day. Such impact has been widely 

researched but mainly via simulation (Emmerink et al., 1995; Hu and Mahmassani, 1997; Jha 

et al., 1998; Liu et al., 2017) and human-participating lab experiments (Mahmassani and 

Stephan, 1988; Qi et al., 2019; Rapoport et al., 2014; Yang et al., 1993). Less attention has 

been paid to the mathematical/analytical properties (in particular, the stability) of the 

evolution process, and most of these mathematical/analytical analyses were focused on the 

historical and real-time information, where the most common assumption is that the travelers 

know the actual travel time of the previous day(s) (Horowitz, 1984; Cantarella and Cascetta, 

1995; Huang et al., 2008). However, besides providing historical records, the transportation 

agencies can actually manage and control the network in a more proactive manner by, e.g., 

forecasting the travel time in the coming day (Cho and Hwang, 2005; Friesz et al., 1994) and 

feeding the travelers with the forecasted information rather than the historical one. A natural 

question is then, how such strategical change on the information provision would influence 

the behavior and properties of the transportation system regarding the evolution of traffic 

flows from day to day, and whether the system would benefit from it. Such question is rarely 

theoretically discussed in the literature. Bifulco et al. (2016) assumed the coexistence of 
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equipped and non-equipped travelers and rigorously proved the stability of the system under 

perfect information (i.e., the forecasted travel time is exactly the same as the travel time that 

the travelers will experience); numerical studies were also conducted to examine the impact 

of imperfect information and ATIS market penetration rate on the network stability, while the 

theoretical analysis was not provided. Similarly, Delle Site (2018) also assumed the perfect 

information and considered an additional type of users who have the knowledge of free-flow 

travel time in the network; however, the stability of the proposed model was not analyzed. In 

a word, both Bifulco et al. (2016) and Delle Site (2018) assumed that the ATIS can accurately 

estimate the travel time that the travelers will experience, which is difficult to be satisfied in 

reality. A more realistic assumption was considered in Liu et al. (2017) for investigating the 

day-to-day departure time choice, which assumed the ATIS to update its forecast using the 

linear filtering; however, a general stability condition was not provided. Adopting the idea of 

Liu et al. (2017) for route choice, Li et al. (2018) further assumed that ATIS’s forecast can 

have a certain level of inaccuracy (i.e., the forecasted travel time are proportional to the travel 

time that the travelers will experience) and rigorously proved the stability of their day-to-day 

dynamical system. However, the proportionality assumed by Li et al. (2018) is still a strong 

assumption which is dependent on the forecasting algorithms used by the ATIS and is not 

necessarily satisfied in practice. Therefore, in this paper, instead of assuming the accuracy of 

the forecast, we explicitly model ATIS’s travel time forecasting rule and discuss how it can 

influence the stability of the day-to-day flow evolution. 

 

The day-to-day flow evolution can be studied by setting up appropriate day-to-day models. In 

this paper, we use the deterministic-process day-to-day models, which are formulated as 

ordinary differential equations or difference equations with a set of equilibrium points as 

steady states1. There are two major ways in constructing a deterministic-process day-to-day 

model. On one hand, one can assume that the travel demands are inclined to switch from 

slower routes to faster routes and that the flow adjustment rate is determined by the revealed 

flows and actual travel time. The resultant models include the “rational behavior adjustment 

process” (RBAP) (Guo et al., 2013, 2015; Yang and Zhang, 2009; Zhang et al., 2001), those 

embraced by the RBAP framework (Friesz et al., 1994; Han and Du, 2012; He et al., 2010; 

                                                 
1 There’s another important type of day-to-day model which formulates the flow change as a 

stochastic process, or more specifically a Markov chain/process, whose steady state is the equilibrium 

probability distribution. The research can be traced back to Cascetta (1989) and was reviewed recently 

by Watling and Cantarella (2015). 
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Jin, 2007; Nagurney and Zhang, 1997; Smith, 1984; Smith and Mounce, 2011) and others 

(e.g., Smith and Watling, 2016; Xiao et al., 2016, 2019; Ye and Yang, 2017). On the other 

hand, one can treat the change of network flows as a result of the change of travelers’ 

perception or prediction on the future travel time. Such idea was adopted in Bie and Lo 

(2010), Cantarella and Cascetta (1995), Horowitz (1984), Watling (1999), Xiao and Lo 

(2015), Xiao et al. (2016) and Ye and Yang (2013), just to name a few, and will also be used 

in this paper. 

 

When formulating a day-to-day model, the “day” can be assumed either continuous or 

discrete, where both were widely used in the literature. The discrete-time models are a more 

realistic representation of the real world, while the continuous-time models are more 

convenient for mathematical and analytical analysis on the stability. Meanwhile, the stability 

properties of a continuous-time model can indicate the stability of its discrete-time 

counterpart (Watling, 1999). Therefore, in this paper, we start with the discrete-time models 

but also derive and study their continuous-time counterparts. The theoretical analyses and 

case studies on these models enable us to investigate and compare the stability2 of the 

day-to-day evolution processes without or with the travel time forecast of ATIS. It is found 

that, the discrete-time models behave more complicatedly than the continuous-time models, 

and the two modeling techniques can give consistent, different or even contrary results. 

 

The rest of this paper is organized as follows. The discrete-time and continuous-time 

day-to-day models are established and examined in Sections 2 and 3, respectively. In each 

section, two scenarios are examined, one is when ATIS publishes the actual travel time of the 

previous day, and the other is when ATIS publishes the forecasted travel time which is 

calculated based on the travel time of the previous day. Based on the results from Sections 2 

and 3, Section 4 discusses the impact of ATIS’s travel time forecast on the system stability. 

Section 5 uses numerical examples to verify the theoretical findings and study other features 

of the models. Conclusions are drawn in Section 6 with discussions on possible future 

research directions. 

 

                                                 
2 Hereafter in this paper, the “stability” and “local stability” both refer to “local asymptotic stability”, and 

the “stable” and “locally stable” both refer to “locally asymptotically stable”. The definition is given in 

Appendix A. 
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2. The discrete-time day-to-day models 

Consider a directed traffic network with a set of directed links and a set W  of 

origin-destination (OD) pairs. Each OD pair w W  has a fixed travel demand wd  and is 

connected by a set wR  of paths. Let rwf  be the flow on path wr R  between OD pair 

w W  and ( )
T

, ,rw wf f r R w W=    the path flow vector, where ‘T’ represents the 

transpose operation. Denote ( )rwc f  as the actual travel time of path wr R , w W , under 

path flow f , and ( ) ( )( )
T

, ,rw wc f c f r R Ww = . 

 

Assume that, at day n , travelers have their own perception or prediction on the travel time 

of each path wr R , w W , denoted by ( )rwp n . And before making route choices at day 

1n+ , they will receive some travel time information from ATIS, which is denoted by 

( )1rwC n +  for each path wr R , w W . Travelers will then learn and form their new 

perception/prediction for the imminent travel, via a learning process. A widely-used form is 

that travelers’ new perception is a linear combination of their old perception and the travel 

time information from ATIS, given a learning parameter  : 

 ( ) ( ) ( ) ( )1 1 1 pp n C n n+ + + −=   , 0 1    (1) 

where ( ) ( )( )
T

, ,rw wp n p n r R Ww =  and ( ) ( )( )
T

1 1 , ,rw wC n C n r R Ww+ + = . 1 =  

means ( ) ( )11n np C+ = + , i.e., travelers are taking ATIS’s information as their new 

perception/prediction.  

 

Based on the updated perception/prediction, travelers will reconsider their route choices, 

causing the path flows to change at the aggregate level. Assume that a certain proportion (say 

 ) of travelers will reconsider their route choices and the resultant flow pattern follows some 

network loading model, while the remaining travelers would stick to their choice on the 

previous day. Then the flow pattern on day 1n+  will be 

 ( ) ( )( ) ( ) ( )1 1 1n n nf p f+ =  + + − , 0 1    (2) 
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where ( ) ( )( )
T

,· · ,w rw wr wd R W   =  are the (stochastic) network loading functions, and 

( )·rw  is the probability function of choosing route wr R , w W . Hereafter, we call   

the flow adjustment parameter. 

 

Model (1)+(2) describes a day-to-day process where travelers update their 

perceived/predicted travel time based on the information from ATIS, and the path flows 

evolve according to travelers’ cognitive behavior. Various types of information can be 

provided by ATIS, such as the actual travel time of the previous day, or some forecast based 

on either linear combination or more sophisticated rules. These different types of information 

can influence the evolution of the flows and the stability of the transportation systems, which 

will be discussed in the following subsections.  

2.1. When ATIS publishes actual travel time of the previous day 

First, we assume that ATIS publishes the actual travel time of the previous day, i.e., 

( ) ( )1C n c n+ = , then travelers’ learning process in Eq. (1) reads 

 ( ) ( ) ( ) ( )11p n c n p n= + + − , 0 1    (3) 

Model (2)+(3) is a widely-used day-to-day model (Cantarella and Cascetta, 1995; Cascetta 

and Cantarella, 1993) which describes the flow evolution of a network where travelers learn 

the travel time via exponential smoothing based on the historical travel condition and make 

route choices based on their perception. Its fixed points satisfy 

 p c= , ( )f p=   

which coincide with the user equilibrium associated with the particular network loading 

function ( )· .  

 

To judge the local stability (defined in Definition A1 in Appendix A) of each equilibrium 

point of the dynamical system (2)+(3) as well as other day-to-day models that will be studied 

later in this paper, we adopt the following two assumptions.  
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Assumption 1. The Jacobian of the path travel time function ( )c f  w.r.t. the path flow 

vector f  is symmetric and positive semidefinite. 

Assumption 2. The Jacobian of the network loading function ( )p  w.r.t. travelers’ 

perceived travel time p  is symmetric and negative semidefinite. 

 

Remark 1. Assumption 1 naturally holds if the link travel time functions are separable, 

differentiable, increasing and additive (i.e., the path travel time is equal to the sum of travel 

time on all links that constitute the path). Assumption 2 is satisfied if the route choice 

probability functions ( )·rw  are based on the random utility theory in which the probability 

density functions of the perception errors do not depend on the systematic utilities (Cantarella 

and Cascetta, 1995), e.g., if ( )·rw  follow the logit model.           □ 

 

We then have the following lemma which is essential for analyzing the local stability of our 

day-to-day models in this paper. 

 

Lemma 1. Denote 
c

fJ  as the Jacobian of ( )c f  w.r.t. f , and pJ 
 the Jacobian of 

( )p  w.r.t. p , both evaluated at a particular equilibrium point given ( )c f  and ( )p . 

If Assumption 1 and Assumption 2 hold, then all the eigenvalues of 
c

p fJ J
, denoted by i ,

1,2 ,,i N= , are real and nonpositive, where N  denotes the total number of paths in the 

network. 

 

Proof. The lemma is readily proved according to Theorem 7.5 in Zhang (2011) that the 

eigenvalues of the product of two positive semidefinite matrices are real and nonnegative.  □ 

 

The following theorem then gives the stability condition of model (2)+(3). 

 

Theorem 1. Denote min  as the minimum eigenvalue of 
c

p fJ J
, i.e., 

min 1,2, ,: mini N i= =  . 

Under Assumption 1 and Assumption 2, an equilibrium point of the discrete-time day-to-day 

model (2)+(3) is locally asymptotically stable if 
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( )( ) ( ) ( )

min

2 12 1
2 1

−  − + 
  − = −



−

 

−
−   (4) 

and unstable if the inequality in Eq. (4) is reversed. 

 

Proof. The same result has been presented in Eq. (2.27) of Cantarella and Cascetta (1995) 

with part of the original proof given by Cantarella and Cascetta (1994). However, as the 

proof in Cantarella and Cascetta (1994) is generally inaccessible both online and offline, we 

provide a complete proof in Appendix B.       □ 

 

From Eq. (4), the local stability of an equilibrium point is determined by the minimum 

eigenvalue of 
c

p fJ J
. Then we immediately have the following corollary regarding the 

stability region of an equilibrium point. 

 

Corollary 1. For the discrete-time model (2)+(3), when ATIS publishes actual travel time: 

(a) If min 1  − , the equilibrium point is stable regardless of the values of the flow 

adjustment parameter   and travelers’ learning parameter  . 

(b) If min 1  − , the equilibrium point is conditionally stable. Given min , the equilibrium 

point is stable when  

 
( )

( )min

2

2 1

1 2− +
 

 − +
 (5) 

The stable and unstable regions are separated by the curve 

 
( )min

4 2

12


 =

− 

−

+
 (6) 

which is decreasing and convex w.r.t.  . Here the stable (unstable) region refers to the 

region of   and   which makes the equilibrium point stable (unstable). 

(c) Given min , if an equilibrium point is stable under 0 =   and 0 =  , then it is also 

stable under any combinations of   and   which satisfy 0    and 0   .  

(d) When min  increases within ( , 1− − , the stable region w.r.t.   and   will expand. 
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Proof. As the right hand side of Eq. (4) is increasing w.r.t.   and  , its maximum value is 

achieved at 1 =  =  and equal to -1. This leads to part (a). Transforming Eq. (4) yields Eq. 

(5), which leads to part (b) and further part (c). Part (d) can be easily derived according to Eq. 

(4).          □ 

 

According to Eqs. (5) and (6), the stable and unstable regions w.r.t. the flow adjustment 

parameter   and travelers’ learning parameter   under different values of min  are 

illustrated in Figure 1, which verifies Corollary 1. 

 

 

Figure 1. Stable and unstable regions of the discrete-time model when ATIS publishes actual 

travel time: the region on the lower-left (upper-right) of each curve is stable (unstable), while 

the stability under the parameter combinations on the curves is unclear. 

 

Remark 2. In Ye et al. (2018), Eq. (3) was reformulated as 

 ( ) ( ) ( ) ( )1p n n cp n np+ + −=    , 0 1    (7) 

and interpreted as “travelers will correct their previous perception/prediction by adding or 

subtracting a proportion   of the difference between actual and perceived/predicted travel 

time”, where   indicates the level of aggressiveness while travelers are learning the travel 

time. In this sense, 1   is also possible. Therefore, we can formulate a more general 
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learning model as  

 ( ) ( ) ( ) ( ) 1 max ,0p n n np pc n= + + −   , 0   (8) 

where the function  max ,0  avoids negative values of perception/prediction but will not 

affect the analysis on the local stability if the travel time functions of all links are strictly 

positive (so the equilibrium path travel time will be strictly positive). In this case, Theorem 1 

will still be valid for judging the local stability of the new system (8)+(2), which is explained 

in Remark 4 in Appendix B.            □ 

2.2. When ATIS publishes forecasted travel time 

Now we consider another case when ATIS adopts a more proactive strategy and publishes the 

forecasted travel time by learning from the actual travel time of the previous day. The new 

forecast is calculated as a linear combination of the old forecast and the actual travel time of 

the previous day: 

 ( ) ( ) ( ) ( )1 1n n C nC c+ =  + − , 0 1    (9) 

where   is ATIS’s forecasting parameter. Model (9)+(1)+(2) now describes the day-to-day 

dynamic when both ATIS and travelers are learning. Notably, when 1 = , we have 

( ) ( )1C n c n+ =  and the dynamic degenerates to model (2)+(3). 

 

The fixed points of model (9)+(1)+(2) also coincide with the user equilibrium under the 

network loading function ( )· . Local stability of the fixed points can be checked via 

Theorem 2 below. 

 

Theorem 2. Denote 

 ( ) ( ) ( )11 1i ia = − −− + − +  +    (10) 

 ( )( ) ( )( ) ( )( )11 111 1h − − + − − + −= −  (11) 

 ( )( )( )1 1 1g − − −= −  (12) 

 ( ) 3 2 2 3 2

0 18 4 4 27i i i ia hg a g a h gh  = − + − −  (13) 
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 ( ) 2 3i ia h = −  (14) 

 
( ) ( ) ( )3 1 11h

−

− − + −− −  =
 + 




 (15) 

and 

 
( ) ( ) ( )1 1 13h

+

− + −− −  =
+ 




 (16) 

 When  ax 1, ,m   = , an equilibrium point is asymptotically stable if 

 
( )( )( )

min

22 2− − −



 −


 (17) 

and unstable if the inequality in Eq. (17) is reversed.  

 When  ax 1, ,m    , an equilibrium point is 

- asymptotically stable if each i , 1,2 ,,i N= , satisfies one of the following three 

conditions:  

(i) ( ) 0i   , i.e., i− +     . 

(ii) ( ) 0i    (i.e., i −    or i +   ), ( )0 0i    and  

( )( ) ( )( ) ( )( )

( )( )( )

1 1 1 1 1 1 1 1 1

1 1 1
i

− − − − − − − − −          
 

 − − −
 (18) 

(iii) ( ) 0i   , ( )0 0i   , and 

( ) ( ) ( ) ( )( )( )3 2 1 1 2 2
,

2

1 2
maxi

h − − 


+ + − + − +   − −
− −

  
    

 (19) 

- unstable if at least one i , 1,2 ,,i N= , satisfies one of the following two 

conditions: 

(iv) ( ) 0i   , ( )0 0i   , and the inequality in Eq. (18) is reversed. 

(v) ( ) 0i   , ( )0 0i   , and the inequality in Eq. (19) is reversed. 

 

Proof. The proof is provided in Appendix C.         □ 
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Remark 3. In Theorem 2, when  ax 1, ,m   → , the stability condition for 

 ax 1, ,m     will degenerate to the stability condition for  ax 1, ,m   = , i.e., 

conditions (i)-(iii) will reduce to Eq. (17), and conditions (iv)-(v) will reduce to the reverse of 

Eq. (17). The proof is provided in Appendix D. This agrees with the fact that when ATIS’s 

forecasting parameter 1 = , the model degenerates to the case that ATIS publishes actual 

travel time.        □ 

 

When ATIS publishes forecasted travel time, the stability condition given by Theorem 2 is 

much more complex than Theorem 1. Therefore, we don’t have the similar results of 

Corollary 1; instead, we explore the system properties numerically. Given an eigenvalue i , 

we enumerate all the possible combinations of the three parameters  ,   and   in a 

resolution of 0.001, check whether the stability condition is met according to Theorem 2, and 

draw the stable and unstable regions under different values of i  in Figure 2. Here the stable 

(unstable) region refers to the region of  ,   and   which makes the equilibrium point 

stable (unstable). We then have the following observations on the plots: 

(a) When 1i  − , the whole feasible region of  ,   and   is the stable region.  

(b) When i  decreases in ( ), 1− − , the unstable region will expand and thus the stable 

region will shrink.  

(c) As according to Theorem 2, the stable region for an equilibrium point will be the union 

of the stable regions under all eigenvalues i , 1,2 ,,i N= , then from (a) and (b), the 

stability of an equilibrium point is determined by the minimum eigenvalue min . 

(d) The intersection of the unstable region with the plane 1 =  is the same as the unstable 

region given in Figure 1, which agrees with Remark 3. 
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(a) 1i = −                           (b) 1.1i = −  

 

(c) 2i = −                           (d) 5i = −  

 

 

(e) 10i = −                           (f) 20i = −  

 

unstable 

stable stable in the whole region 

unstable 

stable 

unstable stable 

unstable 
stable except 

the red dots 

unstable 
stable except 

the red dots 
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(g) 50i = −                           (h) 100i = −  

Figure 2. Stable and unstable regions of the discrete-time model w.r.t. different eigenvalues 

i , when ATIS publishes forecasted travel time. 

3. The continuous-time day-to-day models 

This section reexamines the two scenarios in Section 2 using continuous-time models. To 

derive the corresponding continuous-time model of its discrete-time counterpart, we refer to 

Watling (1999) and assume that, for a day-to-day process modeled in continuous time, after a 

small increment of time  , the adjustments of travelers’ perceptions and path flows will be 

similar to Eqs. (2) and (3) but proportional to  : 

 ( ) ( ) ( ) ( )ˆ ˆ1p pt C t t+ + =  −  + , ˆ 0  (20) 

 ( ) ( )( ) ( ) ( )ˆ ˆ1f t p t f t+  =  + + − , ˆ 0   (21) 

where t  represents the day which is considered to be continuous; ̂  and ̂  are travelers’ 

learning parameter and the flow adjustment parameter in the continuous-time model, 

respectively. When 0→ , Eqs. (20) and (21) will lead to the following continuous-time 

process (22)+(23): 

 ( )ˆp pC=  − , ˆ 0  (22) 

 ( )( )ˆf p f=   − , ˆ 0   (23) 

unstable stable except 

the red dots 
unstable 

stable except 

the red dots 
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3.1. When ATIS publishes actual travel time of the previous day 

When ATIS publishes actual travel time of the previous day, i.e., C c= , Eq. (22) will read 

 ( )ˆp pc=  − , ˆ 0  (24) 

Then model (23)+(24) describes a continuous-time day-to-day dynamic where the ATIS 

publishes the actual travel time of the previous day. The local stability condition of each 

equilibrium state of the model is given in Theorem 3. 

 

Theorem 3. Under Assumption 1 and Assumption 2, all the equilibrium points of dynamic 

(23)+(24) are locally asymptotically stable. 

 

Proof. The result can be immediately derived from Theorem 1: when the time step 0→ , 

ˆ 0→  in Eq. (20) and ˆ 0→  in Eq. (21), then condition (4) becomes min  − , 

meaning the continuous-time system is always locally stable. But still, we can directly prove 

the theorem based on the formulation of the continuous-time model, and the proof is provided 

in Appendix E.         □ 

3.2. When ATIS publishes forecasted travel time 

When ATIS forecasts the travel time, we can assume 

 ( ) ( ) ( ) ( )ˆ ˆ1C t c t C t+  =  + −  (25) 

and obtain the continuous-time model as 

 ( )ˆ CC c=  − , ˆ 0   (26) 

where ̂  is ATIS’s forecasting parameter in the continuous-time model. When ̂ = + , we 

have c C=  and the dynamical process (26)+(22)+(23) degenerates to model (23)+(24). 

 

The stability condition of each fixed point of the continuous-time model (26)+(22)+(23) is 

established in Theorem 4 below, which cannot be directly derived from the stability condition 

of the corresponding discrete-time model.  

 

Theorem 4. Under Assumption 1 and Assumption 2, for the dynamical system (26)+(22)

+(23): 
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(i) If ˆˆ ˆ =  =  , the equilibrium point is stable regardless of the eigenvalues i . 

(ii) If ̂ , ̂  and ̂  are not all equal, then the equilibrium point is stable if 

 
( )( )

min

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ

−  + + + +






 (27) 

and unstable if the inequality in Eq. (27) is reversed. 

 

Proof. The proof is provided in Appendix F.            □ 

 

From Theorem 4, we immediately have the following corollary. 

 

Corollary 2. For the continuous-time model (26)+(22)+(23): 

(a) Given the minimum eigenvalue min , if the equilibrium point is stable under 0
ˆ ˆ =  , 

0
ˆ ˆ =   and 0

ˆ ˆ =  , it is not necessarily stable under a combination of ̂ , ̂  and ̂

which satisfy 0
ˆ ˆ   , 0

ˆ ˆ    and 0̂   . 

(b) When min 8  − , the equilibrium point is stable regardless of the values of ̂ , ̂  and 

̂ .  

(c) When min 8  − , the equilibrium point is conditionally stable.  

(d) When min  decreases in ( , 8− − , the stable region w.r.t. ̂ , ̂  and ̂  will shrink. 

(e) The stable and unstable regions are determined by ˆ̂   and ˆ̂  , meaning the 

stability of the system will maintain when ̂ , ̂  and ̂  all scale up or down by the 

same ratio. 

(f) If ̂ = +  and  ˆ ˆ,max    + , the equilibrium point is stable for any min  − , 

which confirms Theorem 3. 

 

Proof. Denote ( )ˆˆ ˆ, ,    as the right hand side of Eq. (27), then 
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( ) 2

2

ˆˆ ˆ, , ˆ ˆˆ ˆ ˆ

ˆˆ ˆˆ

     +  −
= −

 


 

Therefore, ( )ˆˆ ˆ, ,    is not monotonic w.r.t. ̂ , and thus part (a) holds. Further, given  

̂  and ̂ , 0
ˆ





 if ˆˆ ˆ   , and 0

ˆ





 if ˆˆ ˆ   , so   achieves the maximum 

at ˆˆ ˆ =  . Since ( )ˆˆ ˆ, ,    is symmetric w.r.t. ̂ , ̂  and ̂ , then ( )ˆˆ ˆ, ,    has a 

maximum equal to -8 achieved when ˆˆ ˆ =  =  . Hence parts (b) and (c) hold. Part (d) is 

obtained according to Eq. (27) and part (b). 

 

Further in Eq. (27), dividing 3̂  in both the numerator and denominator of the right hand 

side and letting ˆˆ =    and ˆˆ =   , we have 

 
( )( )

min

1− ++ ++
 




 (28) 

which yields part (e).  

 

For part (f), when ̂ = +  and  ˆ ˆ,max    + , the right hand side of Eq. (27) is equal to 

 

( )
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ1
ˆ ˆ

ˆ ˆ

 
 
 

− + + ++
 

= −


 
 

Thus Eq. (27) holds if min  − . It means when ̂ = +  (i.e., ATIS publishes actual travel 

time), the equilibrium points of the continuous-time system are always asymptotically stable, 

which agrees with Theorem 3.           □ 

 

Based on Eq. (28), the stable and unstable regions under different values of min  are plotted 

in Figure 3, which verifies Corollary 2. 
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Figure 3. Stable and unstable regions of the continuous-time model when ATIS publishes 

forecasted travel time: the region inside (outside) each curve is unstable (stable), while the 

stability under the parameter combinations on the curves is unclear. 

4. Impact of ATIS’s forecasting behavior on system stability 

Theorems 1-4 have examined how the parameters of the day-to-day models determine the 

stability of the discrete-time and continuous-time models. From these results, we can 

investigate the impact of different types of information on the system stability, and compare 

the conclusions drawn based on the discrete-time and continuous-time models.  

 

Conclusions based on the continuous-time models can be directly drawn according to 

Theorem 3 and Theorem 4: if the ATIS publishes the actual historical travel time, the 

equilibrium points are always locally asymptotically stable; when ATIS forecasts the travel 

time via the exponential-smoothing learning rule, the equilibrium points will have a chance to 

be unstable. It means ATIS’s proactive forecasting strategy reduces the stability of the 

system.  

 

When using the discrete-time models, similar comparisons cannot be made between Theorem 

1 and Theorem 2, due to the complex stability condition given in Theorem 2. However, 

Figure 2 shows that ATIS’s forecasting makes the system behavior more complex, compared 

with the case when ATIS does not forecast. The findings are summarized as follows. 
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 Comparing Figure 2(a)(b), when the minimum eigenvalue 1

min

c   , where 
1c  is a 

critical value which is approximately -1, the system is always stable no matter ATIS 

forecasts the travel time or not, so ATIS’s strategy has no impact on the system stability.  

 Comparing Figure 2(b)(c)(d)(e), when 2 1

min

c c  , where 
2c  is another critical 

value probably between -5 and -10, a smaller   (weight on the historical travel time) 

corresponds to a smaller unstable region of   and  . This means ATIS’s forecasting 

behavior ( 1  ) enlarges the stable region, compared with the case when ATIS publishes 

the historical travel time ( 1 = ). 

 Comparing Figure 2(e)(f)(g)(h), when 2

min

c  , the situation is more complex: a 

combination of the flow adjustment parameter   and travelers’ learning parameter   

which is stable (unstable) when the actual travel time is published can become unstable 

(stable) if the forecasted travel time is published. 

In summary, the discrete-time modeling concludes that, compared with the case when ATIS 

publishes actual historical travel time, publishing the forecasted travel time will either (i) 

expand the stability region and thus improve the system stability, or (ii) reverse the stability 

for some combinations of the system parameters.  

 

Overall, we may conclude that, the conclusions drawn from the discrete-time modeling and 

continuous-time modeling can be consistent, different or contradictory, which depends on the 

system parameters  ,  ,   and the eigenvalues i . And compared with the 

continuous-time models, the discrete-time models behave in a more complex manner and do 

not always favor ATIS’s forecasting behavior from the perspective of system stability.  

5. Numerical example 

In this section, we use a simple network (thus the eigenvalues i  are fixed) to test and verify 

the theoretical results in the previous sections, and further discuss some system features that 

were not theoretically discussed, in particular, how ATIS’s forecast influences the evolution 

of flows. 

 

The Braess network (Figure 4) with only one OD pair is chosen as the example network. A 
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fixed demand of 10 is served by three paths (Path 1, O13D; Path 2, O24D; Path 

3, O253D). The travel time ( )jjc v  on each link j  is determined by 

( ) ( )
4

0 1j j j j jc v c v Y = +
  

, where jv  is the link flow, and 
0

jc  and jY  are parameters given 

in Table 1. 

O D

1

4

5

2

3

 

Figure 4. The Braess network. 

 

Table 1. Parameters of the link travel time functions in the Braess network 

Link index j  1 2 3 4 5 
0

jc  2 2 1 2 1 

jY  4 7 7 3 3 

 

The route choice probabilities are assumed to follow the logit model, i.e., 

 ( )
( )

( )

exp

exp
w

rw

rw

iwi R

p
p

p


−


−
=


, wr R , w W  

We set 5 = , so the equilibrium path flow pattern is uniquely  
T

5.2824,  2.6236,  2.094 , 

and the equilibrium path travel time pattern is  
T

4.0974,  4.2374,  4.2825 . Therefore, the 

three eigenvalues of 
c

p fJ J
 evaluated at the equilibrium point are 1 0 = , 2 2.280= −  and 

3 11.105= − . 

 

The primary objective of this numerical example is to check the stability of the established 

models and show that the models behave the same as the theories predict. To do so, we 

examine the trajectories of path flows under different combinations of parameters. As we are 

investigating the local stability, we assume that the initial path flow pattern is slightly 

perturbed from the equilibrium flow pattern and equal to  
T

5.3,  2.6,  2.1 , and that the initial 
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travel time patterns predicted by the travelers and forecasted by the ATIS are both equal to 

the equilibrium path travel time. 

5.1. The discrete-time models 

For the case when ATIS publishes actual travel time, we set travelers’ learning parameter 

0.5 = . Then according to Theorem 1 and Corollary 1, the equilibrium is stable when the 

flow adjustment parameter 0.425   and unstable when 0.425  . To verify this, Figure 

5 displays the flow trajectories when   is 0.424 and 0.426, respectively; as expected, the 

former is stable and the latter is not. Since the feasible path flow patterns have to meet the 

flow conservation constraint due to the fixed demand, we only display the flows on Paths 1 

and 2. 

 

 

(a) 0.424 =       (b) 0.426 =  

Figure 5. Flow trajectories of the discrete-time model under different flow adjustment 

parameter  , when ATIS publishes actual travel time. 

 

When ATIS publishes forecasted travel time, we set travelers’ learning parameter 0.5 =  

and ATIS’s forecasting parameter 0.6 = . According to Theorem 2, the system is stable 

when flow adjustment parameter 0.773   and unstable when 0.773  . To verify this, 

Figure 6 shows the flow trajectories when   is 0.772 and 0.774, respectively; as expected, 

the former is stable and the latter is not. 
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(a) 0.772 =         (b) 0.774 =  

Figure 6. Flow trajectories of the discrete-time model under different flow adjustment 

parameter  , when ATIS publishes forecasted travel time. 

5.2. The continuous-time models 

This subsection investigates the stability of the continuous-time models. Since when ATIS 

publishes actual travel time, the equilibrium is always stable, we only look into the case when 

ATIS publishes forecasted travel time. Here we choose the flow adjustment parameter ˆ 2 =  

and travelers’ learning parameter ˆ 3= . According to Theorem 4 and Corollary 2, the 

equilibrium point is stable when ATIS’s forecasting parameter ˆ 0.80  or ˆ 7.53  , and 

unstable when ˆ0.80 7.53  . To verify, we plot the flow trajectories under different values 

of ̂  in Figure 7. To obtain the flow trajectories, the ordinary differential equation sets 

which describe the day-to-day dynamics are solved numerically by MATLAB’s built-in 

function ode45 which employs the fourth-order Runge-Kutta method. 

 

Figure 7 shows the trajectories of flow on Path 1 when ̂  varies. The blue dashed (red solid) 

lines are the trajectories when ATIS publishes actual (forecasted) travel time. The findings 

are summarized as follows. 

(i) When ATIS publishes actual travel time, the day-to-day process is stable and convergent. 
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(ii) When ̂  is very small, e.g. 0.02 in Figure 7(a), the flow converges with minimum 

fluctuation. As ̂  increases in the stable region ( ˆ 0.80 , Figure 7(a)(b)(c)), the flow 

fluctuates more and more but still converges. 

(iii) When ̂  enters the unstable region (i.e., ˆ0.80 7.53  , Figure 7(d)(e)), the flow 

fluctuates without converging. 

(iv) When ̂  further increases and re-enters the stable region ( ˆ 7.53  , Figure 7(f)(g)), the 

system goes back to stabilization, and the flow fluctuates less as ̂  increases.  

(v) When ̂  is very large, e.g. 100.00 in Figure 7(g), the trajectory almost overlaps with 

that when ATIS publishes actual travel time; this is consistent with the theory that when 

̂→+ , the system degenerates to the case of publishing actual travel time. 

 

 

(a) ˆ 0.02 =           (b) ˆ 0.10 =  

 

(c) ˆ 0.78 =          (d) ˆ 0.82 =  
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(e) ˆ 7.50 =          (f) ˆ 7.55 =  

 

 

(g) ˆ 100.00 =  

Figure 7. Evolution of flow on Path 1 under different values of ATIS’s forecasting 

parameter ̂ : blue dashed lines for publishing actual travel time, and red solid lines for 

publishing forecasted travel time. 

6. Conclusions 

This paper employs several discrete-time and continuous-time dynamical models to study the 

day-to-day evolution of traffic flows in a road network where travelers receive information 

from ATIS, form their own prediction/perception on travel time, and then choose routes. The 

discrete-time model when ATIS publishes actual travel time of the previous day (called the 

“ATIS-A” scenario) is first examined, which is the same model as that in Cantarella and 

Cascetta (1995). Then the second discrete-time model is analyzed for the case when ATIS 
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publishes the forecasted travel time obtained by exponential-smoothing learning (called the 

“ATIS-F” scenario). After this, the continuous-time models are used to reinvestigate the 

ATIS-A and ATIS-F scenarios. 

 

We derive the stability conditions of the discrete-time and continuous-time dynamics for both 

ATIS-A and ATIS-F scenarios.  

 For the discrete-time models, the stability of both ATIS-A and ATIS-F depends on the 

eigenvalues associated with travel time functions and network loading functions, and on 

the system parameters. Changing the system from ATIS-A to ATIS-F will change the 

system stability in the following two different directions, depending on the 

above-mentioned eigenvalues and system parameters: 

- the stability region will maintain or expand, meaning ATIS’s forecast will maintain or 

improve the system stability; or  

- some combinations of the system parameters which are unstable (stable) under ATIS-A 

will become stable (unstable) under ATIS-F.  

 For the continuous-time models, the ATIS-A system is always stable, and the ATIS-F 

case can be unstable under certain combinations of parameters. It means ATIS’s forecast 

will reduce the system stability. 

Therefore, conclusions drawn from the discrete-time models are more complex than or even 

contrary to that from the continuous-time models. This implies that, when comparing the 

stability of two day-to-day processes, the discrete-time and continuous-time models can lead 

to different conclusions. 

 

For future research, following the idea in this paper, we can introduce ATIS’s forecast to 

other day-to-day processes such as those in Smith (1984), Friesz et al. (1994), Nagurney and 

Zhang (1997), Smith and Watling (2016) and Yang and Zhang (2009). On the other hand, this 

paper only examines the system stability under a particular forecasting rule of ATIS. In the 

future, it is also interesting and meaningful to investigate how ATIS’s forecasting algorithms 

and information releasing strategies affect the system performance in terms of equilibrium 

state, stability, convergence speed, oscillation, cumulative travel time and so on. Moreover, 

travelers’ compliance rate to ATIS may change with the accuracy of the travel time forecast, 

which can also be considered in the day-to-day models, while the challenge is to maintain the 

mathematical tractability of the model for stability analysis. Finally, as the travel time 

forecast is more widely used for short-term forecast in a within-day context, it is also worth 
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investigating a combined day-to-day and within-day model under ATIS, where the departure 

time can be either predetermined (as in Mounce and Carey, 2011; Zhang et al., 2001) or 

adjustable on each day (as in Cascetta and Cantarella, 1991; Yu et al., 2020). 
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Appendix A. Stability theorems 

Definition A1. (Definition 4.1, Khalil, 2002) Suppose *x  is an equilibrium point of the 

autonomous system 

 ( )x x=   (29) 

where : mM →  is a locally Lipschitz map from a domain mM   into m . The 

equilibrium point is 

 locally stable if for each 0  , there is ( ) 0 =     such that 

 ( ) ( )* *0 x x tx x−    −   , 0t  ; 

 unstable if it is not stable; and 

 locally asymptotically stable if it is stable and   can be chosen such that 

 ( ) ( )* *0 lim 0
t

x x x xt
→

−    − =  

where x  stands for the norm of vector x . 

 

The local stability of a discrete-time system 

 ( ) ( )( )1x n x n+ =   (30) 

can be defined in a similar way. For simplicity, the rigorous definition is not presented here. 

 

The local stability of systems (29) and (30) can be analyzed via linearization as given by the 
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following theorem. 

 

Theorem A1. (Theorem 4.7, Khalil, 2002; Theorems 9.1.2, 9.1.3, Lebovitz, n.d.) Let *x  be 

an equilibrium point for the system (29) or (30) where : mM →  is continuously 

differentiable and M  is a neighborhood of *x . Let 

 
( )

*x x

x
J

x
=


=


 

For system (29), *x  is 

 locally asymptotically stable if the real parts of all the eigenvalues of J  are negative; 

and  

 unstable if the real part of at least one of the eigenvalues of J  is positive. 

For system (30), *x  is 

 locally asymptotically stable if the moduli (i.e., absolute values) of all the eigenvalues of 

J  are less than 1; and  

 unstable if the modulus of at least one of the eigenvalues of J  is greater than 1. 

 

The following theorems are also used in the subsequent proofs.  

 

Theorem A2. (adopted from Eq. 0.8.5.13 in Horn and John, 2013) For block matrices 11A , 

12A , 21A  and 22A , if 11A  and 12A  commute, i.e., 11 12 12 11A A A A= , then 

11 12

11 22 21 12

21 22

A A
A A A A

A A
= −  

 

Theorem A3. (adopted from Eq. 0.8.5.3 in Horn and John, 2013) For block matrices 11A , 

12A , 21A  and 22A , if 11A  is invertible, then 
11 12 1

11 22 21 11 12

21 22

A A
A A A A A

A A

−= − . 

Appendix B. Proof of Theorem 1 

The Jacobian matrix of dynamical system (3)+(2) at the equilibrium point is calculated as 
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( )

( ) ( )1

1

1 1

c

f

c

p p f

J

J J I

I

J
J

 

 

  

 −
=   − + −

 (31) 

The eigenvalues of 1J , denoted by  , are the roots of the following equation: 

 
( )

( ) ( )
1

1

1
0

1

c

f

c

p p f

J
I

J I J

I

J
J

 

  −  


−   − −

− −
− = =

−  − 

 (32) 

where J  denotes the determinant of matrix J . Referring to Theorem A2, we have 

 

( ) ( )  ( )

( ) ( )

1 11

11

0

c c

p f p f

c

p f

I J J J J

I

I

J J

 



   − − − − −    − − −  −      

   − −    

 

= − − −

=

  

Then each i  (i.e., each eigenvalue of 
c

p fJ J
, as defined in Lemma 1) corresponds to two 

eigenvalues of 1J  via the following relationship: 

 ( ) ( )1 01 i −   − −− −   =        (33) 

i.e., the two roots of Eq. (33), denoted by ( )i  , are two eigenvalues of 1J . Then 

 ( )
( ) ( ) ( )11

2

i i

i

 −− + +   
 =  

where 

 ( ) ( ) ( ) ( )( )
2

11 4 1 1i i  =  − +− + − −   −  

 

Considering the value of ( )i  : 

(a) If ( ) 0i   , i.e. 

 
( )( ) ( ) ( ) ( )( ) ( ) ( )2 1 11 1 12 1 11

i

 − −  −  − −  −
 

− − − + − − +




      


 (34) 

then ( )i   are complex. According to Vieta’s formula, 

( ) ( ) ( ) ( )( )1 1 1i i i + −      −= − = .  

(b) If ( ) 0i   , i.e. 
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( )( ) ( ) ( )1 12 1 1

i

− − − − −  −+  
  


  (35) 

or 

 
( )( ) ( ) ( )1 12 11

i

− − − −  −+  
  


 (36) 

then ( )i   are real. Hence ( ) 1i    requires ( ) 1i+    and ( ) 1i−   −  

holding simultaneously, where ( ) 1i+    is equivalent to  

 
( )( ) ( ) ( )1 1

1
1 1 1

i

− − − + −  −  
+

=


  (37) 

which always holds as 0i  , and ( ) 1i−   −  is equivalent to 

 
( )( ) ( ) ( ) ( )( )1 1 1 2 21 1

i

− −  − −  −− − +
=

  − −  −
 

 (38) 

When 0 1    and 0 1   , the right hand side of the equality in Eq. (38) is strictly 

smaller than the right hand side of Eq. (35) due to  

 ( )( ) ( )( )1 11 12 1− −  −  − −− −  (39) 

Meanwhile, when Eq. (36) holds, Eq. (38) will automatically hold. Therefore, combining 

conditions (34)-(38), we have: for Eq. (33), ( ) 1i    if and only if condition (38) holds. 

Referring to Theorem A1, the proof is completed. 

 

Remark 4. For the case in Remark 2, when 0 1    and 1  , one can still rely on 

Theorem 1 to check the stability. The proof is almost the same as the proof above – just note 

that, when 0 1    and 1  , we will always have ( ) 0i   , then the condition 

( ) 1i    requires Eqs. (37) and (38) holding simultaneously, which yields Theorem 1.  

Appendix C. Proof of Theorem 2 
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If 1 = , then the case degenerates to Theorem 1, and thus the equilibrium point is 

asymptotically stable when 

 
( )( )( )

min

2 2 2− −
  −

−


 (40) 

If 1  , the Jacobian of the dynamical system (9)+(1)+(2) evaluated at its equilibrium reads 

 

( )

( ) ( )

( ) ( ) ( )
2

1 0

1

1 1

1

1

c

f

c

f

c

p p p f

I J

J I J

J J J J I

I
  

 − 
 

=  −   
   −   

−

−  + − 

 (41) 

whose eigenvalues   are the solutions of  

 

( )

( ) ( )

( ) ( ) ( )

2 1

1 0

1 0

1 11

c

f

c

f

c

p p p f

I J

I J I J

J J I

I

J J  

 − − −  

 − = − −  −  − =  

−  − −

−

− −   − −   

 (42) 

In Eq. (42), swapping the first two rows of blocks and, as ( )1 I− −  is invertible, using 

Theorem A3 leads to 

 ( )
( ) ( )

( )

1
1 1

1 1 0

1

c

f

p

I J

J I


 − −  −  −        − − =

−  −  

−

−

 

which, after using Theorem A2, yields 

 ( ) ( ) ( ) 21 1 01 c

p fI J J − −  −   − − =        − −   (43) 

Therefore, the eigenvalues of 2J  are equivalent to the roots of the following equations, 

 ( ) ( ) ( ): 0i iy z  − = = , 1,2 ,,i N=  (44) 

where 

 ( ) ( ) ( ) ( )1 1 1y   −  − −  −         = −−   

and 

 ( ) 2

i iz  =    

The stability of the dynamical system requires the moduli of all eigenvalues of 2J , i.e., the 

moduli of all roots of Eq. (44), to be less than 1 (Theorem A1).  

 

When 1 = , Eq. (44) leads to 
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 0 =  or ( ) ( )1 01 i − −  −  −−   =        

Referring to Eq. (33), the fixed point is stable when Eq. (40) holds. The situation is the same 

when 1 = . This means Eq. (40) is the stability condition when  max , , 1   = . Therefore, 

hereafter, we consider the case when  max , , 1    . 

 

As  max , , 1    , denote 

  1 ,1min ,1 0 = − − −   

Then ( ) 00y  , ( ) 0y  = , ( )0 0iz = , ( ) 0iz   . Hence we have 

 ( )0 0i   and ( ) 0i    with the equality holding if and only if 0i =  (45) 

Further from Eq. (44), ( ) ( ) ( )i iy z   = −   , where 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 111 1y   −  − − +  −  −  +  − −  −                     = − −− −   

and 

 ( ) 2i iz   =   

Then 

 ( )
0, 0

0,
y

    


  =








, ( )
0, 0

0, 0
iz

 =


   

=








 

and thus 

 ( )
,

,

0

0

0
i

   


 




= 





 (46) 

where ( ) 0i
  =  if and only if 0i =  and at least two of 1− , 1−  and 1−  equal 

 . Conditions (45) and (46) then tell that, within ( 0, , ( ) 0i  =  has one and only one 

(single or multiple) real root, which is denoted by 
r

i

+ , where r

i

+ =  if and only if 

0i = .  
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The two roots of ( ) 0i
  =  are 

 ( )
( ) ( ) ( ) ( )

1,2

1 1

3

1 i i

i

−− + − +  + 
=

      (47) 

where ( )i   is a quarter of the discriminant of ( )i
   and given in Eq. (14). By looking 

into the values of ( )i   and ( )1,2 i  , we have the following cases: 

(i) If ( ) 0i   , i.e., i− +     , where −  and +  are the two roots of ( ) 0i  =  

and given in Eqs. (15) and (16), then ( )i   is increasing in ( ),− +  and thus has a 

triple root which is ( 0,r

i

+    and satisfies 1r

i

+  .  

(ii) If ( ) 0i    (i.e., i −    or i +   ), then ( )i   has two local optima achieved at 

( )1,2 i =   . Based on the fact that ( )0 0i   and ( )0 0i
  , we plot all possible 

shapes of ( )   in Figure 8, where Figure 8(a) is impossible as according to condition 

(46), ( )i   must be strictly increasing in ( )0, r

i

+ . Then we have the following cases 

(a) and (b). 

(a) If ( )0 0i    (where ( )0 i   is the discriminant of ( )i   and given in Eq. (13)), 

then ( )i   has two non-real conjugate complex roots, denoted by c

i

+  and c

i

− , 

respectively. The possible scenarios are shown in Figure 8(e)(f). According to 

Vieta’s formula, ( )( )( )1 11r c c

i i i

+ + −   − −= − , meaning 

 
( )( )( )2 2 1 11

c c c c

i i i i r

i

+ − + −

+

− −− 
   =


= =  

hence 
2

1c

i

   is equivalent to  

 ( )( )( )1 11r

i

+ − − −  (48) 

As ( )i   is strictly increasing in ( )0,  , Eq. (48) is equivalent to

( )( )( )( ) ( )1 1 1 0r

i i i

+− −   −   = , i.e. 
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( )( ) ( )( ) ( )( )

( )( )( )

1 1 1 1 1 1 1

1

1

1

1

1
i

− − − −   − −          




− −

 − −

−




−
  (49) 

(b) If ( )0 0i   , then ( )i   has three real roots, and the possible scenarios are: 

a) In Figure 8(b)(c)(d), ( )1,2 0i   , all the roots are real and nonnegative. 

Meanwhile, when 1  , ( ) 0y      and ( ) 0iz   , and thus ( ) 0i   . It 

means the roots of ( ) 0i  =  must all locate in ( )0,1 , hence their moduli are all 

less than 1. 

b) In Figure 8(g)(h), ( )1,2 0i   , ( )i   has two negative real roots. Then the 

moduli of both negative roots are less than 1 if and only if ( )1,2 1i   −  and 

( )1 0i −  .  

Combining a) & b) yields, if ( )0 0i   , then the moduli of all the roots of ( )i   

are less than 1 if and only if 

 

( )  ( )  ( ) ( )
( )  ( ) ( )

( )  ( ) ( )

1,2 1,2

1,2 1,2

1,2

: 0 : 1 0 : 1 0

: 0 : 1 0

: 0 : 1 0

i i i i i i i

i i i i

i i i i

          

=  

−   − 

−     

   



 − 

  (50) 

According to Eqs. (47) and (14), ( )1,2 0i  =  requires 

( )( ) ( )( ) ( )( )1 1 1 011 1− + −− − + −   − = , which violates  ax 1, ,m    ; 

therefore, we must have ( )1,2 0i    and thus 

 ( )  ( )  ( ) 1,2 1,2 1,2: 0 : 1 0 : 1i i i i i i        =  −  −  (51) 

Meanwhile, from Figure 8(b)(c)(d)(e), we can easily see that, when ( )1,2 0i   , 

one must have ( )1 0i −  ; therefore,  

 ( )  ( ) 1,2: 0 : 1 0i i i i       −    (52) 

Substituting Eqs. (51) and (52) into Eq. (50) yields 
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 ( )  ( ) 1,2: 1 : 1 0i i i i i      −  −   

where ( )1,2 1i   −  is equivalent to 

 
( )( ) ( )( ) ( )( ) ( ) ( ) ( )1 11 1 1 1 3 2 1 1

2

1
i

 −  −  + −   +  −  + +  − + −  +   − − −
 −

  



(53) 

and ( )1 0i −   is equivalent to 

 
( ) ( ) ( )1 1 111 1

i

− + − +          +
 −

− 


 (54) 

 

Summarizing all the conditions above completes the proof.  
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Figure 8. The possible curves of ( )i   when  max , , 1     and ( ) 0i   . 

Appendix D. Proof of Remark 3 

When  ax 1, ,m   → , without loss of generality, assume 1→ . Then Eqs. (10)-(14) read

( ) ( )11i ia − +  = − − +   , ( )( )1 1h = − − , 0g = , ( ) ( )2 2

0 4i ia hh  = −  and 

( ) 2 3i ia h = − . Eq. (18) always holds as it reads 

 
( )( ) ( )( ) ( )( )

( )( )( )1

1 1 1 1 1 1 1 1 1
lim

1 1 1
i −→

− − − − − − − − −          
  = −

 − − −
  

and Eq. (19) reads 

 
( )( ) ( ) ( ) ( )( ) ( )( )11 3 2 1 2 2

,
1 2 2

2
maxi

−  + + − +   −  −  




 − − − − 
 − − = − 

   
 

 

Subsequently we discuss the case when 0h =  and 0h  , respectively.  

 

If 0h = , then ( )0 0i  = , and ( ) 2

i ia  = . Then in Theorem 2, 

 Condition (i) reduces to 0ia = , condition (ii) is invalid, and condition (iii) reduces to 

0ia   and 
( )( )2 2

i

−
−

−





 . Combining conditions (i)-(iii) yields Eq. (17).  

 Condition (iv) is invalid, and condition (v) reads 0ia   & 
( )( )2 2

i

−
−

−





. As 

λ 

φ𝑖ሺλሻ 

λ 

φ𝑖ሺλሻ 

(g) (h) 

λ𝑖
𝑟+  λ𝑖

𝑟+  
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when 
( )( )2 2

i

−
−

−





, we have ( )( )11 01ia + − −  , then condition (v) is 

equivalent to the reverse of Eq. (17). 

 

If 0h  , then 

 Condition (i) reduces to 2 3ia h , condition (ii) to 23 4ih a h  , and condition (iii) to 

2 4ia h  & 
( )( )2 2

i

−
−

−





. Then as the union of conditions (i) and (ii) is 2 4ia h , 

the union of conditions (i)-(iii) is 

 2 4ia h   or  ( 2 4ia h  & 
( )( )2 2

i

−
−

−





) 

   ( 2 4ia h  or 2 4ia h )  &  ( 2 4ia h  or 
( )( )2 2

i

−
−

−





) 

   2 4ia h  or 
( )( )2 2

i

−
−

−





 (55) 

where 2 4ia h  is equivalent to 

 
( )( ) ( ) ( ) ( )( ) ( ) ( )1 12 1 1 2 1 11 1

i

−  − − − +   − − − +        


−




− − −


 (56) 

whose left hand side is not less than 
( )( )22− −

−



. This means condition (55) further 

reduces to 
( )( )2 2

i

−
−

−





, which is Eq. (17).  

 Condition (iv) is invalid, and condition (v) reduces to 2 4ia h  and 

( )( )2 2
i

−
−

−





; according to Eq. (56), one can easily see that condition (v) is 

equivalent to the reverse of Eq. (17). 

 

Combining the results for 0h =  and 0h   completes the proof.  
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Appendix E. Proof of Theorem 3 

The Jacobian matrix at the equilibrium point is calculated as 

 
3

ˆ ˆ

ˆ ˆ

c

f

p

J
J

I J

I

 

 

 −
=   − 

 (57) 

whose eigenvalues, denoted by  , are the roots of the following equation: 

 
( )

( )
( )( )3

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ
0

c

f c

p f

p

J
J

I J
I J I J

I





 + −
 −  += =   + −

−  +
=


 

where the second equality holds due to Theorem A2. Then each eigenvalue i  of 
c

p fJ J
 

corresponds to two eigenvalues of 3J  via the following relationship: 

 ( )( )ˆ ˆ ˆ 0ˆ
i +  + −  = , 1,2 ,,i N=  (58) 

whose roots are 

 
( ) ( ) ( )

2
ˆ ˆ ˆ ˆ ˆ ˆ 1

2

4 i− +  + −  −
 (59) 

If the two roots in Eq. (59) are real, then they are negative as 0i  ; if they are complex, 

then their real parts are negative. Referring to Theorem A1, the equilibrium points of system 

(22)-(23) are always locally asymptotically stable. This completes the proof. 

Appendix F. Proof of Theorem 4 

The Jacobian at the equilibrium point is calculated as 

 
4 0

0

ˆ ˆ0

ˆ ˆ

ˆ ˆ

c

f

p

J

I J

I I

J I

 

 −

 −

 −
 

= 

 






 

whose eigenvalues, denoted by  , are given by the solutions of the following equation,  

 

( )
( )

( )
4

ˆ

0

ˆ0

ˆ

ˆ0

ˆ 0

ˆ

c

f

p

I J

I I I

I

J

J 



=

+  −

 − −  +

−  

=

+

 (60) 

Swapping the top two rows of blocks and referring to Theorem A3, Eq. (60) leads to  
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( )
( )

( )( )

( )( )

( )

( )( )( )

0
0

0

0

ˆˆ 1
ˆ ˆ

ˆˆ ˆ

1 ˆ ˆˆ
ˆˆ

ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

c

f

p

c

f

p

c

p f

IJ
I I I

J I

I J
I

J I

I I J J







 + −  
− −  + 

−  +  

 +   + −
−

−  +

−  +   +  +

=

  
 − 

   


−

  

= 

=



 

(where the second equality holds due to Theorem A2), i.e. 

 ( )( )( )ˆ ˆˆ ˆ ˆ ˆ 0c

p fI J J +   +  + −  =  (61) 

Define 

 ( ) ( )( )( )ˆ ˆ ˆ  +   +   +=   (62) 

then according to Eq. (61), each eigenvalue i  of 
c

p fJ J
 corresponds to three eigenvalues 

of 4J , which are the roots of  

 ( ) ˆ ˆ 0ˆ
i − =  (63) 

Depending on the values of ̂ , ̂  and ̂ , we have the following two cases to discuss. 

(1) When ˆˆ ˆ =  =  , Eq. (63) has three identical roots equal to 1 3ˆ ˆ
i − , which are real and 

negative as 0i  . This proves part (i) in Theorem 4.  

(2) When ̂ , ̂  and ̂  are not all equal, according to Vieta’s formula, the product of the 

three roots is ( )ˆˆ ˆ 1 0i  −  , meaning Eq. (63) has at least one root which is real and 

negative; depending on the value of i , the other two roots are either both real or both 

complex and conjugate. To find out under what circumstance the complex roots would 

appear, by letting ( ) 0  = , we know the local minimum of ( )   (Figure 9) is 

achieved at 

 
( ) ( ) ( )

2

*

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

3

3++  ++ − + +
=
− 


+
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Figure 9. The curve of ( )  . 

 

Obviously, according to Figure 9, Eq. (63) will have complex roots if and only if 

( )*ˆˆ ˆ
i   . Then we have the following two subcases.  

(2a) When ( )*ˆˆ ˆ
i   , all the three roots of Eq. (63) are real and negative. 

(2b) When ( )*ˆˆ ˆ
i   , ( )   will have two non-real complex roots. To know in 

what circumstance the complex roots will have negative real parts, we rewrite Eq. 

(63) as 

 ( ) ( )( )2ˆˆ ˆ 2 0i b k q   +   − +− = = , 
2 0k q−   (64) 

i.e., the real root is b−  and the complex roots are 2ik q k − . Substituting Eq. 

(62) into Eq. (64) reads 

  
( ) ( )
( ) ( )

3 2

3 2

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 2

i

b k q bk bq

 + ++  + ++ +−

= − − + ++ 
 

meaning 

 ˆˆ ˆ 2b k++= −  (65) 

 ˆ ˆˆ ˆ ˆ ˆ 2q bk++ −=  (66) 

 ˆ ˆˆ ˆ ˆ ˆ
i bq− =  (67) 

Solving i  from Eqs. (65)-(67) gives 

 
( ) ( )

2

*

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 2

ˆˆ ˆ
i

k k ++ + +++
   =  −


 (68) 

φሺλሻ 

λ 

𝛼ො𝜃𝜂Ƹμ𝑖 

𝜆∗ 

φሺλ∗ሻ 
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where 
*  is defined as 

 
( )( )

*

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ

−  + + + +



 

From Eq. (68), we have *

i   ( *

i  ) if and only if 0k   ( 0k  ), where k  

is the real part of the non-real complex roots as mentioned earlier. Since Eq. (63) 

will have non-real complex roots when and only when ( )*ˆˆ ˆ
i    (as 

mentioned in the very beginning of this subcase), then it will have complex roots 

with negative real parts ( 0k  ) when *

i   and ( )*ˆˆ ˆ
i   , i.e., 

( )( )* *ˆ ˆˆ ˆ ˆ ˆ ,i      , and complex roots with positive real parts when *

i  . 

Note that ( )* *ˆˆ ˆ    holds because 

 

( )

( ) ( ) ( ) ( ) ( )

( )( )

* *

2 2

ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3

ˆ ˆ ˆ

2
3

27

8

9
ˆ ˆ ˆ ˆ

0

ˆ ˆ

 

=  +  +  + +   + +   +  +  − + + 

 + +  +

 −

  − −   

+ 

 

+



 

where the term in the square root is nonnegative due to 

 ( ) ( ) ( ) ( ) ( )
2 2 2 21ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3

2

  + + − + +  − +   + −
 

−


=  

Combining subcase (2b) with (2a), the equilibrium point is stable when 
*

i  , and 

unstable when 
*

i  , which proves part (ii) in Theorem 4. The whole theorem is thus 

proved.  
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