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Abstract5

This paper investigates solution methods for train eco-driving problems that include the clas-6

sic single-train eco-driving problem, the single-train eco-driving problem with intermediate time-7

window constraints, and the eco-driving problem for a fleet of trains under the green-wave policy.8

The latter two problems are particularly relevant in modern, busy railway networks. We start from9

proposing a relaxed continuous optimal control formulation for the classic single-train eco-driving10

problem and rigorously prove that the relaxation is exact. To solve this relaxed optimal control11

problem, we use the direct method by discretizing the independent variable in the problem and12

converting the problem to a nonlinear program, where the latter can be effectively solved to ex-13

act solutions. To further enhance the computational efficiency, we introduce valid inequalities for14

the nonlinear program. Numerical experiments are conducted to demonstrate the performance of15

our proposed method in terms of solution quality and computing time, which shows that our pro-16

posed method outperforms benchmark direct methods in solving the classic single-train eco-driving17

problem. Furthermore, we extend our proposed method to solve the other two aforementioned18

more complicated but practical eco-driving problems, and our proposed method can deliver exact19

solutions for the formulated nonlinear nonconvex programs within reasonable computing time.20

Keywords: Train eco-driving; Optimal control problem; Direct method; Exact solution;21

Intermediate time-window constraint; Train-fleet eco-driving under green-wave policy.22

1. Introduction23

Railway is an important mode of transport due to its high capacity, punctuality and sustain-24

ability. Nonetheless, the energy consumption of railway systems is substantial worldwide, especially25

as railway networks continue to expand rapidly. More than 50% of the energy used in railway26

operations is consumed by train traction systems (González-Gil et al., 2014). To reduce the en-27

ergy consumption of train traction, eco-driving is widely recognized as an effective measure, as28

this consumption is mainly determined by train driving strategies (Luijt et al., 2017). The most29

energy-efficient driving style that satisfies realistic operational constraints between two stops can30

be found by solving train eco-driving problems.31
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The simplest train eco-driving problem investigated a train running on a flat track with uniform32

speed limits (Ichikawa, 1968). To comply with real-world situations, more practical conditions and33

constraints, such as varying track gradients, varying speed limits, and nonlinear train characteristics,34

have been considered (see, e.g., Yang et al., 2016; Scheepmaker et al., 2017, for a review). We refer35

to such a practical problem as the “classic” single-train eco-driving problem.36

In modern busy railway networks, train operations are frequently interfered with. The eco-37

driving problem has been extended to cope with the interference. These extensions can be summa-38

rized into two categories according to the type of interference:39

• One category is to incorporate time-window constraints into the single-train eco-driving prob-40

lem. These constraints are used to model crossing-time requirements at critical positions on41

the track (such as signals, intersections and passing loops) (Wang and Goverde, 2016; Haahr42

et al., 2017; Liebhold et al., 2023; Ying et al., 2023; Zhou et al., 2023), ensuring that trains43

can pass these critical positions without collision.44

• The other category is to simultaneously optimize the speed profiles of a fleet of trains. In a45

busy railway network, a train can be blocked by another train ahead and thus be prevented46

from applying its own optimized eco-driving speed profiles. Considering this, it would be47

beneficial to simultaneously optimize the speed profiles of a fleet of trains to coordinate their48

movements, while ensuring safe separations between them (Wang et al., 2014; Ye and Liu,49

2016; Albrecht et al., 2018; Howlett et al., 2023).50

Although different methods have been proposed to solve the above-mentioned eco-driving prob-51

lems, so far, as will be revealed by the literature review below, these methods either cannot guarantee52

to deliver exact solutions or require excessively long computing time. The objective of this paper53

is to develop new formulations and solution approaches to effectively and efficiently solve these54

eco-driving problems (for a single train without or with time-window constraints, or for a fleet of55

trains). Meanwhile, the solution method should account for practical track conditions (such as vary-56

ing gradients and varying speed limits) and realistic train characteristics (such as that the running57

resistance and traction/brake capacity are dependent on speed), so as to ensure that the optimized58

driving strategies can be implemented in practice.59

Before presenting our work, in the following sections, we first provide a brief summary of the60

literature on the solution methods to various train eco-driving problems, including the classic single-61

train eco-driving problem (Section 1.1) and the more complicated but practical ones (Section 1.2).62

1.1. Solution methods for the classic single-train eco-driving problem63

The classic single-train eco-driving problem is usually formulated as a continuous optimal control64

problem (OCP), and the OCP is solved to obtain speed and control profiles that can be used to guide65

train operations. In the literature, there are two main types of methods to solve the continuous66

OCP: indirect methods and direct methods.67

The indirect methods, using Pontryagin’s maximum principle, first analyze the optimality con-68

ditions of the OCP to derive the analytical properties of the optimal control modes for eco-driving,69
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and then design numerical algorithms to calculate the sequence and switching points of these modes70

(Khmelnitsky, 2000; Liu and Golovitcher, 2003; Albrecht et al., 2016a,b). While indirect methods71

are effective in solving the classic single-train eco-driving problem, they are challenging to be ap-72

plied to more complex eco-driving problems (e.g., the single-train eco-driving with time-window73

constraints and the coordinated eco-driving of a fleet of trains), since each new problem requires74

sophisticated analysis of the optimality conditions and customized design of numerical algorithms,75

which is usually very difficult (Albrecht et al., 2018; Howlett et al., 2023).76

Different from the indirect methods, the direct methods discretize the independent variable (and77

sometimes the state variables) of the continuous optimal control problems and convert the latter78

into nonlinear programs (NLPs) or graph formulations. The direct methods can be further divided79

into the following four categories:80

• The first category directly solves the nonconvex NLPs using off-the-shelf solvers, such as81

the pseudospectral method (Wang et al., 2013; Wang and Goverde, 2016; Ye and Liu, 2016;82

Goverde et al., 2021) and the direct multiple shooting method (Kouzoupis et al., 2023). Due83

to the limitations of the solvers (Wächter and Biegler, 2006) and the nonlinear programming84

formulations, these methods can only deliver locally optimal solutions.85

• The second category converts the nonconvex NLPs, via approximation, into other forms that86

can yield exact solutions, such as mixed-integer linear programs (MILPs) (Wang et al., 2013;87

Wu et al., 2018; Wei et al., 2022) and convex programs (CPs) (Yazhemsky et al., 2019; Xiao88

et al., 2023a). Specifically, the mixed-integer linear programming methods use piecewise-linear89

functions to approximate the nonlinear functions in the original nonconvex NLPs, and the con-90

vex programming methods approximate the speed-dependent nonconvex force constraints to91

linear constraints. Although exact solutions of the resultant MILPs and CPs can be obtained,92

due to the approximation errors introduced in the process of converting the original NLPs to93

the MILPs and CPs, such exact solutions may only be sub-optimal to the original nonconvex94

NLPs.95

• The third category converts the nonconvex NLPs, via relaxation, into CPs that can be solved96

to exact solutions (Lu et al., 2022; Ying et al., 2023; Feng et al., 2024). However, these exact97

solutions may not be feasible to the original NLPs, because the feasible region is enlarged98

during the relaxation (a counter example is shown in Section 3.3).99

• The fourth category discretizes both the independent variable and the state variables to con-100

struct graph formulations, such as the space-speed graph (Franke et al., 2000; Ghaviha et al.,101

2017; Haahr et al., 2017; Zhou et al., 2023) and the space-time-speed graph (Zhou et al.,102

2017; Wang et al., 2021), which can be solved by (tailored) dynamic programming. How-103

ever, these methods face a trade-off between approximation error (due to discretization of the104

state variables) and computation burden: when the discretization of the variables is finer,105

the approximation error is smaller (and thus the solution quality may be higher), but the106

computation burden will significantly increase.107
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Besides the indirect methods and direct methods, many customized heuristic methods have also108

been used/developed to solve the classic single-train eco-driving problem, such as reinforcement109

learning (Yin et al., 2014; Zhao et al., 2022), a nonlinear programming approach based on closed-110

form expressions (Ye and Liu, 2017), and coasting control (Chang and Sim, 1997; Xiao et al., 2021).111

These heuristic methods enable real-time computing, but cannot guarantee to deliver exact solutions112

for their formulations.113

1.2. Solution methods for more complicated but practical train eco-driving problems114

In busy railway networks, in addition to the arrival/departure time constraints at two ends of115

a journey, some intermediate constraints may also exist. For example, a train may be required to116

arrive at (and pass through) certain intermediate locations within specified time windows (Wang117

and Goverde, 2016; Haahr et al., 2017; Zhou et al., 2023). Various direct methods, such as the pseu-118

dospectral method (Wang and Goverde, 2016), a dynamic programming based heuristic approach119

(Haahr et al., 2017) and a shortest path algorithm (Zhou et al., 2023), were developed to solve the120

single-train eco-driving problem with such time-window constraints. However, these methods face121

the same limitations as those methods used for solving the classic single-train eco-driving problem.122

For a fleet of trains running on the same track in the same direction, the eco-driving problem123

faced in this situation is to find energy-optimal speed profiles for all trains in the fleet compatible124

with signal constraints. Specifically, in a fixed-block signaling system, each block can accommodate125

at most one train at any one time. The signal constraints of the fixed-block signaling are mainly126

represented as two policies: the fixed-time-headway policy (Zhou et al., 2017) and the green-wave127

policy (Wang and Goverde, 2016). Under the fixed-time-headway policy, a minimum time headway128

must be maintained between two successive trains. Under the green-wave policy (Corman et al.,129

2009), a minimum space headway must be maintained (by keeping a certain number of signal blocks130

empty) between two successive trains, so that all trains experience only green signals throughout131

their journey.132

To solve the coordinated eco-driving problem of a fleet of trains under the two policies of a fixed-133

block signaling system, various methods have been applied. On the one hand, indirect methods134

(based on Pontryagin’s maximum principle) have been used to solve the problem with the green-135

wave policy (Albrecht et al., 2018; Howlett et al., 2023). The problem is decomposed into multiple136

single-train eco-driving problems with prescribed time-window constraints, and the optimal driving137

strategy for each train is derived. To generate optimal speed profiles for all trains in the fleet,138

heuristic algorithms are designed for the situation of level track (Howlett et al., 2023). There is still139

a lack of algorithms/methods that can handle either varying gradients or varying speed limits. On140

the other hand, direct methods have been adopted for the fixed-time-headway policy (Zhou et al.,141

2017; Wang et al., 2021). However, the shortcomings of these direct methods persist in terms of142

solution quality and computing time.143

1.3. Paper contribution144

This paper employs direct methods to solve the various eco-driving problems mentioned above.145

It develops new solution methods that can obtain exact solutions of the nonconvex nonlinear pro-146
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gram (NLP) for the classic single-train eco-driving problem within a reasonable computing time,147

and extends these new methods to some more complicated but practical eco-driving problems. In148

comparison with the existing methods, the main contributions of this paper are highlighted as149

follows:150

• For the classic single-train eco-driving problem, we propose an alternative/relaxed optimal151

control formulation and rigorously prove that the proposed relaxation is exact, i.e., the relaxed152

OCP yields the same optimal solution as the original OCP, which enables us to apply direct153

methods to discretize the relaxed OCP to an NLP and efficiently solve the NLP to exact154

solutions.155

• We develop valid inequalities for the NLP to further enhance the computational efficiency.156

Numerical experiments are conducted to evaluate the performance of our proposed method157

in terms of solution quality and computing time. The results show that our proposed method158

outperforms the benchmark direct methods.159

• We extend our proposed method to deliver exact solutions of the NLPs for some more com-160

plicated but practical eco-driving problems, such as the single-train eco-driving problem with161

time-window constraints and the eco-driving problem for a fleet of trains under the green-wave162

policy.163

The remainder of this paper is organized as follows. Section 2 presents the classic single-train eco-164

driving problem. In Section 3, we propose our new direct method for solving the classic single-train165

eco-driving problem. Sections 4 and 5 extend the proposed method to solve the single-train eco-166

driving problem with time-window constraints and the eco-driving problem for a fleet of trains under167

the green-wave policy, respectively. Numerical experiments are presented in Section 6. Finally,168

Section 7 concludes the paper.169

2. Classic single-train eco-driving problem170

In this section, we introduce the basic formulations for the classic single-train eco-driving prob-171

lem. In Section 2.1, we present an optimal control formulation that uses speed and clock time as172

state variables, whereas in Section 2.2, an optimal control formulation with kinetic energy per unit173

mass and clock time as state variables is presented. In Section 2.3, we demonstrate how to recast174

the two optimal control formulations as NLPs via location discretization.175

2.1. Optimal control formulation with speed and clock time as state variables176

In this part, we present a widely-used optimal control formulation for modeling the classic single-177

train eco-driving problem, which uses train location s as the independent variable, with train speed178

v(s) and clock time t(s) at location s as state variables (Howlett, 2000; Liu and Golovitcher, 2003;179

Albrecht et al., 2016a). The longitudinal movement of a train is described as follows:180

dv(s)

ds
=

F (s)−R(v(s))−G(s)

m · v(s)
(1a)
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dt(s)

ds
=

1

v(s)
(1b)

where m represents the train mass, F (s) is the force applied at wheels at location s (positive for181

traction and negative for braking), R(v(s)) is the running resistance under speed v(s) at location s,182

and G(s) is the force caused by gradients at location s. Specifically, the running resistance R(v(s))183

takes the following Davis’ form with c0, c1 and c2 being positive coefficients,184

R(v(s)) = c0 + c1v(s) + c2v
2(s) (2)

and the gradient-related force G(s) is calculated as185

G(s) = mg sin(α(s)) (3)

where g is the gravitational acceleration and α(s) is the track gradient at location s.186

The train can adjust its velocity in an allowable range:187

ϵ ≤ v(s) ≤ vmax(s) (4)

where vmax(s) is the legal upper speed limit at location s, and ϵ is a small positive value to avoid188

singularity in (1). In this paper, we set ϵ as 0.1 m/s.189

Due to the physical characteristics of the train traction and braking systems, the force F that190

the train can apply is restricted by the minimum force Fmin (< 0), the maximum force Fmax (> 0),191

the minimum power Pmin (< 0) and the maximum power Pmax (> 0) (which are all constants).192

These constraints are expressed by the following relations:193

Fmin ≤ F (s) ≤ Fmax (5a)

Pmin ≤ F (s)v(s) ≤ Pmax. (5b)

The goal of the eco-driving problem is to drive a train from a given position S0 to a given194

position Sf within a predefined trip time T , while minimizing net energy consumption. The classic195

single-train eco-driving problem can be formulated as the following OCP:196

min

∫ Sf

S0

F+(s)ds (6a)

s.t. (1), (2), (3), (4), (5), ∀s ∈ [S0, Sf ] (6b)

v(S0) = V0, v(Sf) = Vf (6c)

t(Sf)− t(S0) ≤ T (6d)

F+(s) = max (F (s), ηregF (s)) =

F (s), if F (s) ≥ 0

ηregF (s), if F (s) < 0
(6e)

where V0 and Vf are the initial velocity and final velocity, respectively; ηreg ∈ [0, 1) denotes the197

proportion of braking energy that are reused; and F+(s) is the “equivalent net force” used to198
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compute the net energy consumption. Due to the minimization in (6a), the non-smooth constraint199

(6e) can be replaced by the equivalent constraints (7a) and (7b) below:200

F+(s) ≥ F (s) (7a)

F+(s) ≥ ηregF (s). (7b)

Finally, the OCP of the classic single-train eco-driving is summarized as follows (named OCPv):201

202

OCPv : min

∫ Sf

S0

F+(s)ds (8a)

s.t. (1), (2), (3), (4), (5), (7), ∀s ∈ [S0, Sf ] (8b)

(6c), (6d). (8c)

2.2. Optimal control formulation with kinetic energy per unit mass and clock time as state variables203

In Khmelnitsky (2000), the kinetic energy per unit mass, i.e., E = v2

2 , was introduced as a state204

variable to replace v. The constraints (1)-(3) then become205

dE(s)

ds
=

F (s)− 2c2E(s)− c1
√

2E(s)− c0 −mg sin(α(s))

m
(9a)

dt(s)

ds
=

1√
2E(s)

. (9b)

And the problem OCPv is reformulated as the following OCP (named OCPE):206

OCPE : min

∫ Sf

S0

F+(s)ds (10a)

s.t. (5a), (7), (9), ∀s ∈ [S0, Sf ] (10b)

(6d) (10c)

ϵ2/2 ≤ E(s) ≤ v2max(s)/2, ∀s ∈ [S0, Sf ] (10d)

Pmin ≤ F (s)
√
2E(s) ≤ Pmax, ∀s ∈ [S0, Sf ] (10e)

E(S0) = V 2
0 /2, E(Sf) = V 2

f /2. (10f)

2.3. Nonconvex nonlinear programming models of the classic single-train eco-driving problem207

Direct methods have been employed to solve the OCPv and OCPE, by recasting these optimal208

control problems as NLPs via the discretization of the independent variable (i.e., location s), where209

the resultant NLPs can be solved to obtain the eco-driving strategies. To do so, the entire journey210

is divided into N segments by choosing a set of discrete locations sk, with S0 = s0 < s1 < · · · <211

sN = Sf . Denote ∆sk = sk − sk−1, k ∈ {1, 2, · · · , N}. At location sk, denote the train speed, clock212

time, track gradient, upper speed limit, force applied and equivalent net force as vk, tk, αk, vmax,k,213

Fk and F+
k , respectively. The OCPv can then be converted to the following NLP (named NLPv):214

NLPv : min

N∑
k=1

F+
k ∆sk (11a)
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s.t.
vk − vk−1

∆sk
=

Fk − c2v
2
k − c1vk − c0 −mg sin(αk)

mvk
, ∀k ∈ {1, 2, · · · , N} (11b)

tk − tk−1

∆sk
=

1

vk
, ∀k ∈ {1, 2, · · · , N} (11c)

Fmin ≤ Fk ≤ Fmax, ∀k ∈ {1, 2, · · · , N} (11d)

Pmin ≤ Fkvk ≤ Pmax, ∀k ∈ {1, 2, · · · , N} (11e)

ϵ ≤ vk ≤ vmax,k, ∀k ∈ {1, 2, · · · , N} (11f)

F+
k ≥ Fk, ∀k ∈ {1, 2, · · · , N} (11g)

F+
k ≥ ηregFk, ∀k ∈ {1, 2, · · · , N} (11h)

tN − t0 ≤ T (11i)

v0 = V0, vN = Vf . (11j)

The problem NLPv is nonconvex due to: (i) the equality constraint (11b) with the nonlinear term215

Fk−c0−mg sin(αk)
vk

, (ii) the equality constraint (11c) with the nonlinear term 1
vk
, and (iii) the inequality216

constraint in (11e) with the bilinear term Fkvk. Yazhemsky et al. (2019) directly solved the NLPv217

using the NLP solver IPOPT (Wächter and Biegler, 2006), which can only provide locally optimal218

solutions. Ghaviha et al. (2017) solved the NLPv using a dynamic programming approach, which219

needs to discretize the state variables and introduces further approximation errors, yielding only220

sub-optimal solutions to NLPv.221

By applying the same discretization approach, the OCPE can be converted to the NLPE below:222

223

NLPE : min
N∑
k=1

F+
k ∆sk (12a)

s.t. (11d), (11g), (11h), (11i) (12b)

Ek − Ek−1

∆sk
=

Fk − 2c2Ek − c1
√
2Ek − c0 −mg sin(αk)

m
, ∀k ∈ {1, 2, · · · , N} (12c)

tk − tk−1

∆sk
=

1√
2Ek

, ∀k ∈ {1, 2, · · · , N} (12d)

Pmin ≤ Fk

√
2Ek ≤ Pmax, ∀k ∈ {1, 2, · · · , N} (12e)

ϵ2/2 ≤ Ek ≤ v2max,k/2, ∀k ∈ {1, 2, · · · , N} (12f)

E0 = V 2
0 /2, EN = V 2

f /2 (12g)

where Ek is the kinetic energy per unit mass at location sk. The problem NLPE is also nonconvex due224

to: (i) the equality constraint (12c) with the nonlinear term c1
√
2Ek, (ii) the equality constraint225

(12d) with the nonlinear term 1√
2Ek

, and (iii) the inequality constraint in (12e) with the term226

Fk

√
2Ek. To eliminate the nonconvexity in NLPE, Wang et al. (2013); Wei et al. (2022); Xiao et al.227

(2023b) assumed c1 = 0 to remove the term c1
√
2Ek in (12c). Wang et al. (2013); Wu et al. (2021)228

employed piecewise-linear approximation to handle the nonlinear term 1√
2Ek

in (12d). Xiao et al.229

(2023a) used linear approximation to address the nonlinear term Fk

√
2Ek in (12e). However, all of230

these methods introduce approximation errors, leading to sub-optimal solutions to NLPE.231
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To the best of our knowledge, no direct methods have been reported in the literature that can232

find exact solutions to NLPv or NLPE of the single-train eco-driving problem. To tackle this research233

challenge, we propose new formulations and solution approaches, which are detailed in Section 3.234

3. Our solution method for the classic single-train eco-driving problem235

In this section, we present our formulations and solution approaches for the classic single-train236

eco-driving problem. In Section 3.1, we propose an alternative/relaxed optimal control formulation237

and rigorously prove that the relaxed OCP yields the same optimal solutions as the original OCP.238

In Section 3.2, we recast the OCP as an NLP that can be solved to exact solutions. In Section 3.3,239

we introduce valid inequalities to improve the computational performance of solving the NLP.240

3.1. Reformulation of the OCP for the classic single-train eco-driving problem241

In this part, we reformulate a new OCP for the classic single-train eco-driving problem, utilizing242

speed, kinetic energy per unit mass, and clock time as state variables. This new OCP has the same243

optimal solutions as OCPv and OCPE. The reformulation of the new OCP essentially consists of244

two steps: (i) a linearization step, where the nonlinear constraints regarding the train dynamics are245

linearized by introducing two additional nonconvex equality constraints, and (ii) a convex relaxation246

step, where one nonconvex equality constraint introduced in step (i) is relaxed to a convex constraint.247

The motivation of step (i) is to get a new optimal control formulation OCPR1 that can be discretized248

to an NLP (NLPR1 in Appendix A) which, although nonconvex, can be solved to exact solutions249

without introducing further approximation errors. The motivation of step (ii) is to reduce the250

number of nonconvex constraints in OCPR1 and NLPR1, thereby reducing computing times of251

solving them. Below are the details of these reformulations.252

First, we reformulate the dynamics constraints [(1), (2), (3)] and (9) to eliminate the nonlinear253

terms in the dynamics equations. Specifically, for the kinetic dynamic, different from formulation254

[(1a), (2), (3)] or (9a), here following the approach in Lu et al. (2022), we use both the kinetic255

energy per unit mass E and speed v as state variables. The kinetic dynamic [(1a), (2), (3)] or (9a)256

is rewritten as (13) below:257

dE(s)

ds
=

F (s)− 2c2E(s)− c1v(s)− c0 −mg sin(α(s))

m
(13a)

E(s) =
v2(s)

2
. (13b)

And for the time dynamic (1b) or (9b), a new variable z is introduced, resulting in the following258

equivalent form (14):259

dt(s)

ds
= z(s) (14a)

z(s) =
1

v(s)
. (14b)
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With the above-mentioned two reformulations, the OCPv in (8) and the OCPE in (10) are260

rewritten into an equivalent formulation (named OCPR1) below:261

OCPR1 : min

∫ Sf

S0

F+(s)ds (15a)

s.t. (4), (5), (7), (13), (14), ∀s ∈ [S0, Sf ] (15b)

(6c), (6d), (10d), (10f). (15c)

To solve OCPR1, we can recast it into an NLP by discretization, like in Section 2.3. The resultant262

NLP is referred to as NLPR1 and detailed in Appendix A.263

The new formulation OCPR1 above, although eliminating the nonlinear terms in the dynamics264

constraints, introduces additional nonconvex constraints (13b) and (14b). To reduce the number of265

nonconvex constraints and improve the computational efficiency of solving the associated NLP, we266

relax the nonconvex equality constraint (14b) to a convex inequality constraint as follows:267

z(s) ≥ 1

v(s)
. (16)

This results in the following final form of OCP (named OCPR2):268

OCPR2 : min

∫ Sf

S0

F+(s)ds (17a)

s.t. (4), (5), (7), (13), (14a), (16), ∀s ∈ [S0, Sf ] (17b)

(6c), (6d), (10d), (10f) (17c)

which is identical to OCPR1 except that the nonconvex constraint (14b) is relaxed to the convex269

constraint (16). As long as the relaxation (16) holds with equality at the optimum, the optimal270

solution of OCPR2 will be identical to that of OCPR1. Such equivalence is established in Proposition271

1 below, under a realistic assumption (Assumption 1 below).272

Assumption 1. Denote F ∗(s) as the optimal control profile obtained by solving OCPR2, and v∗(s)273

as the corresponding speed profile. Within [S0, Sf ], there exist two sections [S1, S2] and [S3, S4],274

S0 < S1 < S2 ≤ S3 < S4 < Sf , where:275

(i) Section [S1, S2) applies traction and section [S3, S4) does not apply maximum traction, i.e.,276 F ∗(s) > 0, ∀s ∈ [S1, S2)

F ∗(s) < min
(
Fmax,

Pmax
v∗(s)

)
, ∀s ∈ [S3, S4)

(ii) v∗(s) > ϵ, ∀s ∈ [S1, S4].277

Assumption 1 requires that there exists a pair of traction and non-maximum-traction operations,278

where the non-maximum-traction (which can be traction, coasting or braking) occurs later than279

the traction (Condition (i)), and the train speed during and between these two operations is always280
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greater than ϵ (or say the train does not become standstill) (Condition (ii)). From a practical281

standpoint, such assumption is not strict, since trains usually apply traction at the beginning of a282

journey to start from stopping and braking at the very end of the journey to stop at the platform,283

without stopping en route.284

Proposition 1. Under Assumption 1, the globally optimal solution of OCPR2 always ensures that285

constraint (16) holds with equality, and therefore, the optimal solution of OCPR2 is identical to that286

of OCPR1.287

Proof of Proposition 1. The proof is given in Appendix B.288

Remark 1. If in OCPR2, the inequality trip-time constraint (6d) (i.e., t(Sf)−t(S0) ≤ T ) is changed289

to an equality constraint t(Sf)− t(S0) = T , then Proposition 1 will still hold. The proof in Appendix290

B is still valid by changing all “≤ T” in Stage 2 of the proof to “= T”.291

3.2. NLP model of the reformulated OCPR2292

To solve the reformulated OCPR2, we recast it into an NLP by discretization. Same as in Section293

2.3, we divide the journey between origin S0 and destination Sf into N segments by choosing a set294

of discrete locations sk, with S0 = s0 < s1 < · · · < sN = Sf. Also denote ∆sk = sk − sk−1,295

k ∈ {1, 2, · · · , N}. Then the OCPR2 is discretized as follows:296

NLPR2 : min
N∑
k=1

F+
k ∆sk (18a)

s.t.
Ek − Ek−1

∆sk
=

Fk − 2c2Ek − c1vk − c0 −mg sin(αk)

m
, ∀k ∈ {1, 2, · · · , N} (18b)

tk − tk−1

∆sk
= zk, ∀k ∈ {1, 2, · · · , N} (18c)

zk ≥ 1

vk
, ∀k ∈ {1, 2, · · · , N} (18d)

Ek =
v2k
2
, ∀k ∈ {1, 2, · · · , N} (18e)

Fmin ≤ Fk ≤ Fmax, ∀k ∈ {1, 2, · · · , N} (18f)

Pmin ≤ Fkvk ≤ Pmax, ∀k ∈ {1, 2, · · · , N} (18g)

ϵ2/2 ≤ Ek ≤ v2max,k/2, ∀k ∈ {1, 2, · · · , N} (18h)

ϵ ≤ vk ≤ vmax,k, ∀k ∈ {1, 2, · · · , N} (18i)

F+
k ≥ Fk, ∀k ∈ {1, 2, · · · , N} (18j)

F+
k ≥ ηregFk, ∀k ∈ {1, 2, · · · , N} (18k)

E0 = V 2
0 /2, EN = V 2

f /2 (18l)

v0 = V0, vN = Vf (18m)

tN − t0 ≤ T (18n)

11



(a) The McCormick envelope (represented by the

shaded area) for the relaxation of E = v2/2.

(b) The McCormick envelope (represented by the

shaded area) after the valid inequality E ≥ v2/2 is

introduced.

Figure 1: Illustration of the shrink of the feasible region due to the valid inequality E ≥ v2/2.

where the problem NLPR2 above is still nonconvex due to the nonconvex constraint (18g) with the297

bilinear term Fkvk and the quadratic equality constraint Ek =
v2k
2 in (18e) (note that v2k is also298

bilinear because it can be seen as a bilinear term vkyk under the constraints yk = vk), while other299

constraints are convex. In other words, NLPR2 features a linear objective function, convex con-300

straints and bilinear constraints (which are the only nonconvex components). Such an optimization301

problem with bilinear constraints can be solved to exact solutions using some off-the-shelf solvers302

such as SCIP 8.0 (Bestuzheva et al., 2023) and Gurobi 11.0 (Achterberg, 2023), which combine the303

McCormick relaxation (McCormick, 1976) and spatial branch-and-bound algorithm (Belotti et al.,304

2013). The spatial branch-and-bound algorithm does not rely on piecewise-linear approximations305

for bilinear constraints and thus avoids introducing approximation errors when solving NLPR2. Note306

that NLPR1 has a same formulation as NLPR2 except that NLPR1 has a bilinear equality constraint307

(A.1d) while NLPR2 has a convex constraint (18d), so NLPR1 can also be solved to exact solutions,308

but slower than NLPR2.309

3.3. NLP model with valid inequalities310

In this section, we further introduce two valid inequalities to improve the computational effi-311

ciency for solving our nonconvex NLPR2. Specifically, we first add the convex constraint (19) into312

NLPR2:313

Ek ≥
v2k
2
, ∀k ∈ {1, 2, · · · , N} (19)

which will not affect the optimal solution as constraint (19) corresponds to a larger region than314

constraint (18e). However, this can improve the computational efficiency because, as illustrated315

in Fig. 1, the McCormick relaxation uses convex regions (the “McCormick envelope”) to linearize316

the bilinear constraint (18e) (Fig. 1(a)), which enlarges the feasible region; the valid inequality317

(19) helps shrink the feasible region introduced by the McCormick relaxation (Fig. 1(b)) and thus318

improves the computational efficiency.319
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Furthermore, we use zk to replace 1
vk

in the force constraint (18g), leading to the inequality:320

Pminzk ≤ Fk ≤ Pmaxzk, ∀k ∈ {1, 2, · · · , N}. (20)

Note that this will not affect the optimal solution either, as constraint (20) corresponds to a larger321

domain than constraint (18g) since, by combining constraints (18d) and (18g), and considering that322

Pmin < 0 and Pmax > 0, we have323

Pminzk ≤ Pmin
1

vk
≤ Fk ≤ Pmax

1

vk
≤ Pmaxzk.

However, the inequality (20) can enhance the computational efficiency because it can provide tighter324

bounds on the variables Fk when applying the McCormick relaxation to handle the bilinear terms325

Fkvk in constraint (18g). To be more specific, without the inequality (20), the McCormick relax-326

ation relaxes the constraint (18g) to the McCormick envelope which is a quadrilateral within the327

rectangular region defined by (21) and (22) (Fischetti and Monaci, 2020):328

Fmin ≤ Fk ≤ Fmax (21)

ϵ ≤ vk ≤ vmax,k. (22)

Then when adding the inequality (20), together with the constraint (21) on Fk above, we have329

max (Fmin, Pminzk) ≤ Fk ≤ min (Fmax, Pmaxzk)

which provides tighter upper and lower bounds on Fk than (21) and thus a tighter McCormick330

envelope.331

Finally, we add the above-mentioned two sets of inequalities into our model NLPR2. This gives332

us the following NLP (named NLPR3):333

NLPR3 : min
N∑
k=1

F+
k ∆sk (23a)

s.t. (18b)–(18n), (19), (20) (23b)

which is identical to NLPR2 except that the two valid inequalities (19) and (20) are introduced.334

Although the two valid inequalities appear simple, they can significantly reduce the computation335

time, as shown in the numerical experiments in Section 6.336

It is worth mentioning that some studies on the train eco-driving problem suggest solving a337

convex program, which is actually a further relaxation of our model NLPR2. However, the optimal338

solution to that convex program may not be optimal or feasible for NLPR2, as evidenced by the339

counter example we have found. The following remark presents the convex program in the literature340

and the counter example we constructed.341

Remark 2. In Lu et al. (2022), Ying et al. (2023) and Feng et al. (2024), the authors presented a342

convex model and claimed that the optimal solution to their model is identical to that of the original343
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Table 1: Parameters of the train.

Parameter Symbol Value

Train mass [ton] m 400

Maximum tractive power [kW] Pmax 3600

Maximum braking power [kW] Pmin −3600

Maximum tractive force [kN] Fmax 240

Maximum braking force [kN] Fmin −240

Running resistance [kN] (v:[m/s]) R(v) 5.84 + 0.4 v + 0.015 v2

nonconvex NLPR1 for the eco-driving problem, and thus is also identical to the optimal solution of344

our model NLPR2. The formulation of their convex model is given as:345

min

N∑
k=1

F+
k ∆sk (24a)

s.t. (18b)–(18d), (18f), (18h)–(18n), (19), (20) (24b)

which is a relaxation of our model NLPR2: the constraint (20) corresponds to a larger domain than346

constraint (18g) and is thus a relaxation of the latter; meanwhile, the constraint (19) is a relaxation347

of the constraint (18e).348

Although the relaxed model (24) is convex and thus can yield exact solutions, the obtained solution349

might be suboptimal or even infeasible for our model NLPR2. The reason is that, the relaxation (20)350

provides an incentive of achieving zk > 1
vk
, as this can allow for applying larger control force to351

reduce travel time and save energy. However, such larger control force is infeasible for our NLPR2.352

Indeed, we have found a counter example demonstrating that the optimal solution of the relaxed353

convex model (24) is infeasible for our NLPR2, and the counter example is presented in Example 1354

below.355

Example 1. In this example, the trip length is 15.02 km, which is divided into 520 segments. We356

use non-uniform segment length to reduce discretization error at low speed around the start and end357

of the trip: the length for the first 10 and last 10 segments is 1 m, and is 30 m for the other 500358

segments. The planned trip time is 540 s, and the speed limit is uniformly 140 km/h. The train359

parameters are listed in Table 1, and we assume no braking energy is reused, i.e., ηreg = 0. The360

track gradient αk is set as follows:361

αk =


0, k ∈ {1, 2, · · · , 310}

−0.04, k ∈ {311, 312, · · · , 483}

0, k ∈ {484, 485, · · · , 520}.

The solution of the relaxed convex model (24) is plotted in Fig. 2. Fig. 2(a) shows that the362

optimal solution can always obey the speed limit. But from Fig. 2(b), we can see z > 1
v at the final363
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(a) Speed profile. (b) The difference between z and 1
v
. (c) Force profile.

Figure 2: The optimal solution for Example 1 obtained by solving the relaxed model (24) proposed by Lu et al. (2022),

Ying et al. (2023) and Feng et al. (2024).

braking stage (after 14km), i.e., the relaxation (20) is not tight. As a result, correspondingly in364

Fig. 2(c), the obtained optimal braking force exceeds/violates the allowed lower bound during the365

final braking stage. This makes the solution infeasible not only for our NLPR2 but also for practical366

applications, and thus the solution cannot be used to guide real-life train driving.367

4. Solving the single-train eco-driving problem with time-window constraints368

In this section, we extend our proposed method to solve the single-train eco-driving problem369

with time-window constraints. Time-window constraints commonly exist in railway operation and370

have been widely investigated in the literature (Wang and Goverde, 2016; Haahr et al., 2017; Ying371

et al., 2023; Zhou et al., 2023). The most typical scenario to impose the time-window constraint is372

at junctions where multiple lines intersect. With time-window constraints, each train is assigned a373

specific time window to pass through the junction, so as to avoid conflicts and unnecessary stops. By374

considering time-window constraints in a single-train eco-driving problem, the optimized solutions375

guarantee a train to pass through critical locations within the predefined time-windows, improving376

the practicality of the eco-driving models.377

Assume there are W intermediate locations (also called the “passage points”) with time-window378

constraints, positioned at xw ∈ (S0, Sf), w ∈ {1, 2, · · · ,W}. Define W = {x1, x2, · · · , xW } as the379

set of these intermediate locations. Under the time-window constraints, the clock time t(xw) for380

the train to pass each location xw is constrained as381

tmin
w ≤ t(xw) ≤ tmax

w , ∀xw ∈ W (25)

where tmin
w and tmax

w are the minimum/earliest and the maximum/latest permissible times for the382

train to cross location xw, respectively. The single-train eco-driving problem with time-window383

constraints can be formulated by adding the constraint (25) into the OCPR1, resulting in the384

following OCP (named OCPtw):385

OCPtw : min

∫ Sf

S0

F+(s)ds (26a)
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s.t. (4), (5), (7), (13), (14), ∀s ∈ [S0, Sf ] (26b)

(6c), (6d), (10d), (10f), (25). (26c)

To solve OCPtw, we extend our proposed solution method in Section 3. We first again relax386

the nonconvex equality constraint (14b) to the convex inequality constraint (16), resulting in the387

following OCP (named OCPtw–R):388

OCPtw–R : min

∫ Sf

S0

F+(s)ds (27a)

s.t. (4), (5), (7), (13), (14a), (16), ∀s ∈ [S0, Sf ] (27b)

(6c), (6d), (10d), (10f), (25). (27c)

Different from Proposition 1 that requires Assumption 1 to hold so as to guarantee the exact-389

ness of relaxation when solving the classic single-train eco-driving problem without time-window390

constraints, the presence of time-window constraints may require more strict assumptions than As-391

sumption 1. In particular, we provide Assumption 2 as a sufficient condition to guarantee that392

Proposition 2 holds.393

Assumption 2. Denote (F ∗
tw(s), v

∗
tw(s), E

∗
tw(s), z

∗
tw(s), t

∗
tw(s)) as the optimal solution to the problem394

OCPtw−R. Let Wactive ⊂ W be the set of passage points where the upper bounds of the time-395

window constraints are active, i.e., t∗tw(xw) = tmax
w for all xw ∈ Wactive, and tmin

w ≤ t∗tw(xw) < tmax
w396

for all xw ∈ W \ Wactive. The Assumption 1 holds for each track section [y0, yf ], where y0, yf ∈397

Wactive ∪ {S0, Sf} and y0 < yf .398

Proposition 2. If Assumption 2 holds, then the globally optimal solution of OCPtw–R is identical399

to that of OCPtw.400

Proof of Proposition 2. For passage points xw ∈ Wactive at which the upper bound of the time-401

window constraint is active, we can divide the entire track section [S0, Sf ] at these passage points402

into multiple subsections, i.e., the [y0, yf ] in Assumption 2. For each of these subsections, we403

can formulate a smaller eco-driving problem and require the departure/arrival time and speed404

at its origin/destination (which will be the passage points xw ∈ Wactive) to be equal to t∗tw(xw)405

and v∗tw(xw); note that each of these smaller eco-driving problems may still include time-window406

constraints at the passage points in W \ Wactive. Then the solution of each smaller eco-driving407

problem on each subsection will be identical to the solution of OCPtw on that same subsection.408

Therefore, to prove that the relaxation (16) is exact for OCPtw is equivalent to proving that the409

relaxation is exact for each smaller eco-driving problem on each subsection [y0, yf ]. The proof for410

each smaller eco-driving problem can follow the same idea of proving Proposition 1 and Remark 1;411

note that a time-window constraint with an inactive upper bound will not affect the derivation in412

the proof of Proposition 1.413

To solve OCPtw–R, we discretize the location such that the set W of passage points is a subset414

of the set of discrete locations {s1, s2, · · · , sN−1}. Denote the index of the discrete location xw as415
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dw, i.e., sdw = xw for all w ∈ {1, 2, · · · ,W}. Then the time-window constraint (25) can be rewritten416

as a linear constraint below:417

tmin
w ≤ tdw ≤ tmax

w , ∀w ∈ {1, 2, · · · ,W}. (28)

Finally, the OCPtw–R is discretized to the following NLP (named NLPtw–R):418

NLPtw–R : min
N∑
k=1

F+
k ∆sk (29a)

(18b)–(18n), (28) (29b)

which is obtained by adding the time-window constraint (28) to the problem (18). To improve the419

computational efficiency, we also incorporate the valid inequalities (19) and (20) into the NLPtw–R,420

resulting in the following NLP (named NLPtw–RV):421

NLPtw–RV : min
N∑
k=1

F+
k ∆sk (30a)

(18b)–(18n), (19), (20), (28). (30b)

5. Solving the eco-driving problem for a fleet of trains with the green-wave policy422

In this section, we extend our proposed method to solve the eco-driving problem for a fleet of423

trains with the green-wave policy. The green-wave policy is a railway traffic management strategy424

designed to ensure that trains encounter only green lights during their journey (Corman et al., 2009).425

This can prevent unnecessary decelerations of the trains due to signal-dependent speed limits and426

unnecessary stops caused by red lights, allowing for a higher average travel speed along a railway427

corridor (thereby accommodating more trains and thus increasing the capacity of the corridor) and428

lower energy consumption. The green-wave policy is particularly useful when the railway corridor429

is busy and thus the train headway is short, where trains can frequently encounter yellow and red430

lights if their movements are not carefully planned (Thomassen, 2014). In this case, an eco-driving431

model that jointly optimizes the speed profiles of all trains can help to coordinate the movement of432

all trains, achieve the green wave and maximize the overall energy saving.433

We consider a fleet of I trains, indexed 1, 2, · · · , I, travelling between origin S0 and destination Sf434

under fixed-block signaling, and no overtaking can take place. Train i is assumed to depart from the435

origin S0 at time T
(i)
0 and arrive at the destination Sf no later than T

(i)
f , and T

(1)
0 < T

(2)
0 < · · · < T

(I)
0 .436

Assume the track from origin to destination consists of P blocks. Signals are installed at the entrance437

and exit of each block, including the origin and the destination. Therefore, there are in total P +1438

signals; let 0, 1, · · · , P be the indices of the signals, and Xp be the position of signal p, where439

S0 = X0 < X1 < · · · < XP = Sf , and X = {X0, X1, · · · , XP }. Each signal p is assumed to have M440

aspects.441

Fig. 3 demonstrates a fleet of trains (Train 1, Train 2 and Train 3) running with the green-442

wave policy in a three-aspect signaling system. To ensure that all the three trains consistently443
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X0

Travel direction

X1 X2 X3 X4 X5 X6 X7

Train 1Train 2Train 3

Green light:
Pass without signal-
related speed limits

Red light:
Stop before
this signal

Yellow light:
Pass with signal-
related speed limits

Block

Figure 3: An example of a fleet of three trains following the green-wave policy under the three-aspect signaling.

encounter green signals under the three-aspect signaling, there must be at least two empty blocks444

between each pair of consecutive trains. In general, to achieve the green-wave policy in an M -aspect445

signaling system, whenever a train i arrives at a signal, there should be at least M −1 empty blocks446

between train i and its immediate follower train i+1, which can be expressed as the following signal447

constraint:448

t(i)(Xp) ≤ t(i+1)(Xp−M+1), ∀p ∈ {M − 1,M, · · · , P}, i ∈ {1, 2, · · · , I − 1} (31)

where t(i)(Xp) is the clock time of train i at location Xp.449

For our eco-driving problem of a fleet of trains under green-wave policy, the objective is to450

minimize the overall net energy consumption of the fleet by simultaneously optimizing the eco-451

driving profiles of all trains in the fleet, so as to coordinate their movements and ensure that all452

trains encounter only green signals throughout their journeys and arrive at destinations on time.453

The OCP is named OCPmt and formulated as follows:454

OCPmt : min
I∑

i=1

∫ Sf

S0

F+(i)(s)ds (32a)

s.t.
dE(i)(s)

ds
=

F (i)(s)− 2c
(i)
2 E(i)(s)− c

(i)
1 v(i)(s)− c

(i)
0 −m(i)g sin(α(s))

m(i)
(32b)

dt(i)(s)

ds
= z(i)(s) (32c)

z(i)(s) =
1

v(i)(s)
(32d)

E(i)(s) =
v(i)(s)2

2
(32e)

F
(i)
min ≤ F (i)(s) ≤ F (i)

max (32f)

P
(i)
min ≤ F (i)(s)v(i)(s) ≤ P (i)

max (32g)

ϵ2/2 ≤ E(i)(s) ≤ v2max(s)/2 (32h)

ϵ ≤ v(i)(s) ≤ vmax(s) (32i)

E(i)(S0) =
(
V

(i)
0

)2
/2, E(i)(Sf) =

(
V

(i)
f

)2
/2 (32j)

v(i)(S0) = V
(i)
0 , v(i)(Sf) = V

(i)
f (32k)

t(i)(S0) = T
(i)
0 , t(i)(Sf) ≤ T

(i)
f (32l)
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F+(i)(s) ≥ F (i)(s) (32m)

F+(i)(s) ≥ ηregF
(i)(s) (32n)

(31) (32o)

where the symbols have the same meaning as before, while the superscript (i) is attached to the455

symbols to indicate a certain train i.456

We apply the method proposed in Section 3 to solve the problem OCPmt. We first again relax457

the nonconvex equality constraint (32d), i.e., z(i)(s) = 1
v(i)(s)

, to the convex inequality constraint458

z(i)(s) ≥ 1

v(i)(s)
. (33)

Then, we have the following relaxed OCP (named OCPmt–R) for the eco-driving problem of a fleet459

of trains with the green-wave policy:460

OCPmt–R : min
I∑

i=1

∫ Sf

S0

F+(i)(s)ds (34a)

s.t. (32b), (32c), (32e)–(32o), (33) (34b)

which is identical to OCPmt except that the nonconvex constraint (32d) is relaxed to the convex461

constraint (33). To guarantee that the model OCPmt–R can yield the same optimal solution as the462

model OCPmt (Proposition 3), a sufficient condition is provided as in Assumption 3.463

Assumption 3. Denote
(
F (i)∗(s), v(i)∗(s), E(i)∗(s), z(i)∗(s), t(i)∗(s), i = 1, 2, · · · , I

)
as the optimal464

solution to OCPmt. Let X (i)
active ⊂ X be the set of locations of signals that the signal constraints465

(31) between train i and its immediate follower (i.e., train i + 1) are active under the optimal466

solution, i.e., for each p ∈ {M − 1,M, · · · , P}, Xp ∈ X (i)
active means t(i)(Xp) = t(i+1)(Xp−M+1), and467

Xp ∈ X \ X (i)
active means t(i)(Xp) < t(i+1)(Xp−M+1). The Assumption 1 holds for each train i on468

each track section
[
y
(i)
0 , y

(i)
f

]
where y

(i)
0 , y

(i)
f ∈ X (i)

active and y
(i)
0 < y

(i)
f .469

Proposition 3. If Assumption 3 holds, then the globally optimal solution of OCPmt–R is identical470

to that of OCPmt.471

Proof of Proposition 3. Referring to the problem with time-window constraints, the signal con-472

straint (31) between each pair of trains i and i+1 serves as an upper-bound time-window constraint473

for the leading train i and a lower-bound time-window constraint for the following train i+1. There-474

fore, for each train i, its journey can be divided, as described in Assumption 3, into subsections at475

the signal positions where its upper-bound time-window constraints are active, i.e., where its signal476

constraints with respect to the following train i+1 are active. The proof of Proposition 3 can then477

follow the same idea as proving Proposition 2 and is omitted here.478

To solve OCPmt–R via discretization, we choose N discrete locations such that they include the479

locations of all signals. Denote bp as the index of the discrete location where signal p is located at,480
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and thus the location of signal p is sbp , i.e., sbp = Xp. Then the problem OCPmt–R is discretized to481

the following NLP (named NLPmt–R):482

NLPmt–R : min
I∑

i=1

N∑
k=1

F
+(i)
k ∆sk (35a)

s.t.
E

(i)
k − E

(i)
k−1

∆sk
=

F
(i)
k − 2c

(i)
2 E

(i)
k − c

(i)
1 v

(i)
k − c

(i)
0 −m(i)g sin(αk)

m(i)
(35b)

t
(i)
k − t

(i)
k−1

∆sk
= z

(i)
k (35c)

z
(i)
k ≥ 1

v
(i)
k

(35d)

E
(i)
k =

(
v
(i)
k

)2
/2 (35e)

F
(i)
min ≤ F

(i)
k ≤ F (i)

max (35f)

ϵ ≤ v
(i)
k ≤ vmax,k (35g)

P
(i)
min ≤ F

(i)
k v

(i)
k ≤ P (i)

max (35h)

ϵ2/2 ≤ E
(i)
k ≤ v2max,k/2 (35i)

E
(i)
0 =

(
V

(i)
0

)2
/2, E

(i)
N =

(
V

(i)
f

)2
/2 (35j)

v
(i)
0 = V

(i)
0 , v

(i)
N = V

(i)
f (35k)

t
(i)
0 = T

(i)
0 , t

(i)
N ≤ T

(i)
f (35l)

F
+(i)
k ≥ F

(i)
k (35m)

F
+(i)
k ≥ ηregF

(i)
k (35n)

t
(i)
bp

≤ t
(i+1)
bp−M+1

, ∀p ∈ {M − 1,M, · · · , P}, i ∈ {1, 2, · · · , I − 1}. (35o)

Similar to Section 3.3, we also add the two sets of valid inequalities into NLPmt–R, resulting in483

the following NLP (named NLPmt–RV):484

NLPmt–RV : min

I∑
i=1

N∑
k=1

F
+(i)
k ∆sk (36a)

s.t.P
(i)
minz

(i)
k ≤ F

(i)
k ≤ P (i)

maxz
(i)
k (36b)

E
(i)
k ≥

(
v
(i)
k

)2
/2 (36c)

(35b)–(35o). (36d)

6. Numerical experiments485

This section conducts numerical experiments to investigate the performance of our proposed486

methods for solving various eco-driving problems, including the classic single-train eco-driving prob-487

lem in Section 6.1, the single-train eco-driving problem with time-window constraints in Section 6.2,488

and the eco-driving problem for a fleet of trains under the green-wave policy in Section 6.3.489
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Table 2: Performances of the solution methods for the classic single-train eco-driving problem

on the route of Example 1.

Instance
NLPR1 in (A.1) NLPR2 in (18) NLPR3 in (23)

Ctime [s] Gap [%] Ctime [s] Gap [%] Ctime [s] Gap [%]

N = 170 3.01 0.0 2.71 0.0 0.89 0.0

N = 320 8.54 0.0 5.65 0.0 2.68 0.0

N = 395 135.25 0.0 10.53 0.0 3.32 0.0

N = 520 107.27 0.0 13.48 0.0 4.43 0.0

N = 770 3600.71 0.1 35.12 0.0 11.58 0.0

N = 1020 3600.55 0.1 80.69 0.0 19.29 0.0

N = 1520 3600.68 0.3 111.80 0.0 41.44 0.0

Note: “Ctime” means the computing time; “Gap” means the optimality gap when the

solver terminated.

The train parameters used are listed in Table 1. The optimization problems are solved by Gurobi490

11.0 1 in Julia on a desktop computer with an Intel i7-13700K processor (16 cores) and 16GB RAM.491

In the experiments, the maximum computing time is set to 3600 seconds.492

6.1. Performance of the proposed method for the classic single-train eco-driving problem493

This section presents numerical results using the models proposed in Sections 3.1, 3.2, and 3.3494

to solve the classic single-train eco-driving problem.495

First, we evaluate the effectiveness of the proposed models and the valid inequalities under the496

same setting as Example 1. Three different formulations are tested, including: the NLPR1 in (A.1)497

with equality constraints zk = 1/vk, the NLPR2 in (18) with relaxed inequality constraints zk ≥ 1/vk,498

and the NLPR3 in (23) with relaxed inequality constraints zk ≥ 1/vk and valid inequalities. We499

test the models with different numbers of segments for discretization: N = 170, 320, 395, 520, 770,500

1020, 1520. The results are listed in Table 2, and the findings are summarized as follows. For501

most instances, exact solutions of the problems are obtained within one hour, except for the model502

NLPR1 under a large number of segments (N ≥ 770). The computing time is significantly reduced503

with the relaxed constraint in NLPR2 and further reduced with the valid inequalities in NLPR3.504

The combination of the relaxed constraint and valid inequalities in NLPR3 enables obtaining exact505

solutions of all instances in Table 2 within 1 minute, and instances with 520 or fewer segments506

within 5 seconds.507

The optimal solution obtained by the NLPR3 for the instance with N = 520, i.e., the same508

setting as in Example 1, is plotted in Fig. 4 for further examination. We can observe that the speed509

profile is below the speed limits (Fig. 4(a)), the control force profile is within the force bounds510

1Gurobi 11.0 can obtain exact solutions of bilinear programs when the parameter “FuncNonlinear” is set to 1,

which activates the spatial branch-and-bound algorithm (Achterberg, 2023).
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(a) Speed profile. (b) Force profile. (c) The difference between z and 1
v
.

Figure 4: Optimal solutions of our proposed method for the route in Example 1.

(Figs. 4(b)), and the relaxation (18d) is always tight (Fig. 4(c)). This verifies that the optimal511

solutions of the classic single-train eco-driving problem can be obtained by solving our proposed512

model NLPR3. In the following experiments, we use NLPR3 as our proposed model since it has the513

best performance among the three models tested.514

Second, we compare the performance of our proposed model NLPR3 with the MILP model515

presented in Appendix D on the route of Example 1. For the MILP method, we consider using 32516

or 64 pieces of linear lines to linearize/approximate the nonlinear functions. We refer to the resultant517

MILP models as MILP-32 and MILP-64, respectively. The computation results are presented in518

Table 3. We can see that, for the MILP models, only the instances with a small number of segments519

(i.e., N = 170) can be solved to exact solutions within one hour, but the computing times are520

significantly longer than our model NLPR3, while the energy consumptions are higher due to the521

approximation error. Furthermore, we also compare the performance of the MILPs and our model522

on another artificial but practical route (called the “practical route” hereafter): the gradients and523

speed limits are shown in Fig. 5, and the planned trip time is 600 s. The results are summarized524

in Table 4, showing that our proposed model NLPR3 significantly outperforms the MILP models525

in terms of both solution quality and computing time. In the following experiments, we set the526

number of segments for discretization as N = 520.527

Third, we investigate the impact of regenerative braking on optimal solutions, by solving the528

problems with different values of ηreg (i.e., the proportion of braking energy being reused) using529

our proposed model NLPR3 on the practical route. The results for ηreg = 0.1, 0.2, · · · , 0.8 are530

summarized in Table 5, which reveal that all instances are solved within 3 seconds, and the energy531

consumption can be reduced by as much as 10% when the braking energy is effectively reused. The532

optimal trajectories for ηreg = 0.1 and ηreg = 0.8 are plotted in Fig. 5, showing that: the speeds are533

below the speed limits (Fig. 5(a)), the relaxation (18d) is tight (Fig. 5(b)), and the applied forces534

are within the force bounds (Figs. 5(c) and 5(d)).535

6.2. Optimal solutions for the single-train eco-driving problem with time-window constraints536

In this section, we present numerical results using our proposed model NLPtw−RV to solve the537

single-train eco-driving problem with time-window constraints on the practical route, and we set538
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Table 3: Performances of the MILP models for the classic single-train eco-driving problem

on the route of Example 1.

Instance
MILP-32 model MILP-64 model

Ctime [s] Gap [%] Diff [%] Ctime [s] Gap [%] Diff [%]

N = 170 146.43 0.0 1.21 697.73 0.0 0.19

N = 320 3600.69 1.7 - 3600.69 - -

N = 395 3600.57 - - 3600.63 - -

Note: A positive value of “Diff” means the percentage of energy consumption increased

compared to the optimal solutions of our proposed model NLPR3. The MILP-64 model

has lower energy consumption than the MILP-32 model because, with an increased

number of linear pieces, the approximation error decreases and thus the obtained

optimal solution is better.

Table 4: Performances of the methods for the classic single-train eco-driving problem on the practical route.

Instance
MILP-32 model MILP-64 model NLPR3

Ctime [s] Gap [%] Diff [%] Ctime [s] Gap [%] Diff [%] Ctime [s] Gap [%]

N = 170 2.36 0.0 34.92 1735.43 0.0 2.61 0.69 0.0

N = 320 3600.71 0.6 - 3600.86 3.5 - 1.43 0.0

N = 395 3600.47 0.6 - 3604.09 3.1 - 1.79 0.0

N = 520 3600.35 0.1 - 3600.00 - - 4.50 0.0

N = 770 3600.00 - - 3600.00 - - 7.49 0.0

Note: The significant difference in energy consumption between the MILP-64 model and the MILP-32 model is

primarily attributed to the approximation error in travel time. For the MILP-32 model, the actual trip time is

548.2 s, whereas for the MILP-64 model, it is 591.5 s.

Table 5: The impact of regenerative braking on the net energy consumption (NEC) for the classic single-train eco-

driving problem.

Instance NEC [kWh] Ctime [s] Rate∗ Instance NEC [kWh] Ctime [s] Rate∗

ηreg = 0.1 163.13 2.34 1.1% ηreg = 0.5 155.29 2.23 5.9%

ηreg = 0.2 161.24 1.97 2.3% ηreg = 0.6 153.17 2.24 7.2%

ηreg = 0.3 159.32 2.02 3.4% ηreg = 0.7 150.94 2.31 8.5%

ηreg = 0.4 157.33 2.16 4.6% ηreg = 0.8 148.52 2.36 10.0%

∗“Rate” means the energy-saving rate, which is calculated as the relative reduction on net energy consumption

compared with the case without energy regeneration (i.e., ηreg = 0).
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(a) Speed profiles. (b) The difference between z and 1/v.

(c) Force profile under ηreg = 0.1. (d) Force profile under ηreg = 0.8.

Figure 5: Optimal trajectories obtained by our proposed model NLPR3 for ηreg = 0.1 and ηreg = 0.8.
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Table 6: Results of the instances with different time-window constraints.

Instance
Passage point 1 Passage point 2

Ctime [s]
Pos. [m] 1 TW [s] 2 AT [s] 3 Pos. [m] 1 TW [s] 2 AT [s] 3

(I) 5860 - 4 234.73 11 620 - 4 428.90 1.17

(II) 5860 [240, 300] 240.00 11 620 - 4 431.92 0.92

(III) 5860 - 4 222.94 11 620 [360, 420] 420.00 0.91

(IV) 5860 [240, 300] 240.00 11 620 [360, 420] 420.00 1.23

1 “Pos.” means position.
2 “TW” means time window.
3 “AT” means the optimal arrival time at the passage point.
4 “-” means no time-window constraint is imposed at this passage point.

ηreg = 0.5 and N = 520. Two locations, 5860m and 11 620m from the origin, are chosen as passage539

points where the time-window constraints can potentially be imposed. The time windows at the540

two locations are set to [240 s, 300 s] and [360 s, 420 s] from the departure time of the train from541

the origin, respectively. We consider that the train may or may not be required to follow the time-542

window constraints at each of these two passage points, leading to four instances for comparison.543

The detailed settings of the four instances, as well as the optimal passing time at the two passage544

points obtained by the optimization, are shown in Table 6. For the instance (I) without time-545

window constraints, (which is the instance in Section 6.1), the crossing times at the two passage546

points are 234.73 s and 428.90 s, respectively, which are not within the specified time windows.547

For the instances (II)-(IV) with time-window constraints, the constraints are all respected. The548

computing times for all instances are short, within 2 seconds.549

The optimal solutions of the three instances with time-window constraints are plotted in Fig.550

6: the speed limits are all respected (Fig. 6(a)), the control force profiles are all within the force551

bounds (Figs. 6(b)-6(d)), and the convex relaxation is always tight (Fig. 6(e)).552

6.3. Optimal solutions for a fleet of trains with green-wave signal constraints553

In this section, we investigate the eco-driving solutions for a fleet of three trains with green-wave554

signal constraints, using our proposed model NLPmt−RV. We set ηreg = 0.5 and N = 520. The555

track condition is the same as the practical route. The track is assumed to contain nine blocks,556

with signals at X0 = 0m, X1 = 520m, X2 = 2500m, X3 = 4480m, X4 = 6460m, X5 = 8440m,557

X6 = 10 420m, X7 = 12 400m, X8 = 14 380m, and X9 = 15 200m. A four-aspect signaling system558

is adopted, so the green-wave policy requires three empty blocks in front of a train when it arrives559

at a signal.560

First, we set the trains’ departure and arrival headway as 210 s, and the trip time for each train561

as 600 s. Thus, the departure times of the three trains from the origin are set to be 0 s, 210 s and562

420 s, and the arrival times at the destination are 600 s, 810 s and 1020 s. If each train optimizes their563

own speed profile without considering other trains, they will violate the train separation required564

25



(a) Speed profiles of the three instances with time-window constraints.

(b) Force profile of instance (II). (c) Force profile of instance (III).

(d) Force profile of instance (IV). (e) The difference between z and 1/v.

Figure 6: Optimal solutions obtained by our proposed model NLPtw−RV for the single-train eco-driving problem with

time-window constraints.
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Train 1
Train 2
Train 3
Locations of signals

Figure 7: Position-time trajectories of the three trains when each train adopts their own eco-driving profile.

by the green-wave policy, as shown in Fig. 7 that the position-time trajectories of train 2 and train565

3 intersect with the green lines.566

We then optimize the speed profiles of the three trains simultaneously to follow the green-wave567

policy. The optimal solution can be found in 6.08 s, which is plotted in Fig. 8. By cooperatively568

adjusting the speed profiles of the three trains (Fig. 8(a)), the green wave is achieved (Fig. 8(b)),569

where the position-time trajectories of all trains have no intersection with the green lines. The570

exactness of the relaxed constraint (35d) is verified by Fig. 8(c).571

The optimal passing times of the three trains at the signals are presented in Table 7. The passing572

times t(1)(X8) = t(2)(X5) and t(1)(X9) = t(2)(X6) ensure the green wave between train 1 and train573

2. Similarly, the passing times t(2)(X4) = t(3)(X1) and t(2)(X8) = t(3)(X5) ensure the green wave574

between train 2 and train 3.

Table 7: Optimal passing times of the three trains at signals.

Signal X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

Train 1 0.0 s 38.3 s 116.5 s 178.5 s 242.8 s 308.3 s 373.9 s 445.7 s 534.4s 600.0s

Train 2 210 s 248.3 s 327.6 s 392.2 s 458.3s 534.4s 600.0s 666.6 s 746.3s 810.0 s

Train 3 420 s 458.3s 539.3 s 607.2 s 676.3 s 746.3s 811.9 s 878.0 s 956.8 s 1020.0 s

575

7. Conclusion576

In this paper, we study three train eco-driving problems arising from real-life railway operation,577

i.e., the classic single-train eco-driving problem, the single-train eco-driving problem with time-578

window constraints, and the eco-driving problem for a fleet of trains with the green-wave policy.579

We propose new formulations and solution approaches of direct methods to solve these eco-driving580
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(a) Speed profiles of the three trains with green-wave signal constraints.

(b) Position-time trajectories of the three trains with green-wave signal constraints.

(c) The difference between z and 1/v of the three trains with green-wave signal constraints.

Figure 8: Optimal solution obtained by our proposed model NLPmt−RV for three trains with green-wave signal

constraints.
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problems. In particular, we first propose a relaxed continuous optimal control formulation for581

each eco-driving problem, and rigorously prove that each relaxation is exact under some practical582

conditions, i.e., the relaxed formulation has the same optimal solution as the original formulation.583

Then, to solve the relaxed optimal control formulations, we recast them into NLPs by discretizing584

the independent variable. We solve the resultant NLPs to exact solutions using existing solvers and585

develop valid inequalities to solve the NLPs more efficiently. To evaluate the performance of our586

solution methods, we conduct computational experiments on the three eco-driving problems. The587

overall results indicate a significant superiority of our proposed methods in terms of solution quality588

and computing time.589

The merits of our proposed methods lie in their ability to efficiently find exact solutions of590

the nonconvex NLPs for eco-driving problems with practical operational constraints, as well as591

the flexibility/extendability of the modeling framework. The solutions obtained by our methods592

can be used as a benchmark to evaluate the performance of other direct methods proposed in the593

future. The flexibility/extendability of the modeling framework means that our proposed methods594

are flexible to be applied to solve other extended eco-driving problems, for example, those with the595

electrical energy consumption model considered in Kouzoupis et al. (2023), Xiao et al. (2023a) and596

Feng et al. (2024).597

For future work, some interesting directions could be explored. First, our models and methods598

for the eco-driving of a fleet of trains can be extended to the eco-driving of platoons of trains where599

platoons are formed by virtually coupled trains (Chai et al., 2024). In this case, an eco-driving model600

needs to decide not only the speed profiles of all trains but also their states of being coupled and601

decoupled. Second, when the optimized trajectories are implemented on real trains, discrepancies602

between the planned trajectories and actual trajectories are inevitable due to stochastic factors.603

Modeling and solving train eco-driving problems under stochastic factors would be an interesting604

topic for future research.605
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Appendix A. Formulation of NLPR1 for solving OCPR1611

Same as in Section 2.3, we divide the journey between origin S0 and destination Sf into N612

segments by choosing a set of discrete locations sk, with S0 = s0 < s1 < · · · < sN = Sf. Also denote613

∆sk = sk − sk−1, k ∈ {1, 2, · · · , N}. Then the OCPR1 is discretized as:614

NLPR1 : min
N∑
k=1

F+
k ∆sk (A.1a)
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s.t.
Ek − Ek−1

∆sk
=

Fk − 2c2Ek − c1vk − c0 −mg sin(αk)

m
, ∀k ∈ {1, 2, · · · , N} (A.1b)

tk − tk−1

∆sk
= zk, ∀k ∈ {1, 2, · · · , N} (A.1c)

zk =
1

vk
, ∀k ∈ {1, 2, · · · , N} (A.1d)

Ek =
v2k
2
, ∀k ∈ {1, 2, · · · , N} (A.1e)

Fmin ≤ Fk ≤ Fmax, ∀k ∈ {1, 2, · · · , N} (A.1f)

Pmin ≤ Fkvk ≤ Pmax, ∀k ∈ {1, 2, · · · , N} (A.1g)

ϵ2/2 ≤ Ek ≤ v2max,k/2, ∀k ∈ {1, 2, · · · , N} (A.1h)

ϵ ≤ vk ≤ vmax,k, ∀k ∈ {1, 2, · · · , N} (A.1i)

F+
k ≥ Fk, ∀k ∈ {1, 2, · · · , N} (A.1j)

F+
k ≥ ηregFk, ∀k ∈ {1, 2, · · · , N} (A.1k)

E0 = V 2
0 /2, EN = V 2

f /2, (A.1l)

v0 = V0, vN = Vf , (A.1m)

tN − t0 ≤ T. (A.1n)

Appendix B. Proof of Proposition 1615

The proof of Proposition 1 is built on the following three lemmas. The proofs of these lemmas616

are presented in Appendix C.617

618

Common notations for Lemmas 1–3. Assume F ∗(s) and F̂ (s) are two force profiles applied619

on the train, and (v∗(s), E∗(s)) and
(
v̂(s), Ê(s)

)
are the corresponding profiles of speed and kinetic620

energy per unit mass under F ∗(s) and F̂ (s), respectively.621

Lemma 1. Consider a section [S5, S6] of the railway track. If v̂(S5) = v∗(S5), and v∗(s) > ϵ and622

F̂ (s) < F ∗(s) ∀s ∈ [S5, S6), then we have:623

(i) v̂(s) ≤ v∗(s), ∀s ∈ (S5, S6];624

(ii) there exists some s̃ ∈ (S5, S6] such that v̂(s̃) < v∗(s̃);625

(iii) Ê(s) ≥ E∗(s)− 1
m

∫
s

S5

[
F ∗(ξ)− F̂ (ξ)

]
dξ, ∀s ∈ (S5, S6].626

Lemma 2. Consider a section [S5, S6] of the railway track. If v̂(S5) ≤ v∗(S5), and F̂ (s) = F ∗(s)627

∀s ∈ [S5, S6), then we have:628

(i) v̂(s) ≤ v∗(s), ∀s ∈ (S5, S6];629

(ii) Ê(s) ≥ E∗(s)−
[
E∗(S5)− Ê(S5)

]
, ∀s ∈ (S5, S6].630

Lemma 3. If v̂(S5) ≤ v∗(S5), and F̂ (s)− F ∗(s) = δ > 0 ∀s ≥ S5, where δ is a constant, then:631

30



(i) there exists s̃ ∈ [S5, S5 + δ5] such that v̂(s̃) = v∗(s̃), where δ5 =
m
δ

(
E∗(S5)− Ê(S5)

)
;632

(ii) v̂(s) ≤ v∗(s), ∀s ∈ [S5, smin], where smin = min {s|s ≥ S5 & v̂(s) = v∗(s)};633

(iii) Ê(s) ≥ E∗(s)−
[
E∗(S5)− Ê(S5)

]
, ∀s ∈ [S5, smin].634

Now Proposition 1 is ready to be proved.635

Proof of Proposition 1 (by Contradiction). Let (F ∗(s), v∗(s), E∗(s), z∗(s), t∗(s)) denote the optimal636

solution of OCPR2. Then the optimal arrival time t∗(Sf) at the destination Sf can be calculated637

according to (14a) as638

t∗(Sf) = t∗(S0) +

∫ Sf

S0

z∗(s)ds (B.1)

and the actual arrival time t̄∗(Sf) can be computed from the optimal speed profile v∗(s) as:639

t̄∗(Sf) = t∗(S0) +

∫ Sf

S0

1

v∗(s)
ds. (B.2)

Suppose that constraint (16) does not always hold with equality, i.e., z∗(s) > 1
v∗(s) at some position640

s, then we have641 ∫ Sf

S0

z∗(s)ds >

∫ Sf

S0

1

v∗(s)
ds (B.3)

which by combining with Equations (B.1) and (B.2) leads to642

t∗(Sf) > t̄∗(Sf)

meaning that the actual arrival time t̄∗(Sf) at the destination is smaller/earlier than the optimal643

arrival time t∗(Sf). This provides room for the construction of a new solution that has slightly644

lower speed and thus lower net energy consumption, while ensuring that the actual arrival time645

is still not later than the optimal arrival time t∗(Sf). Specifically, when Assumption 1 holds, we646

can slightly reduce the tractive force on section [S1, S2) and increase the force on section [S3, S4)647

without violating the constraints on force or power. This adjustment will result in lower speeds on648

[S1, S4] without violating any constraints on speed or travel time. The change of forces on [S1, S2)649

and [S3, S4) will ultimately lead to lower net energy consumption (which is the objective function650

value).651

More in detail, to construct the new solution, we denote it as
(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
. We652

start by constructing the new force profile F̂ (s). Since guaranteed by Assumption 1 that F ∗(s) > 0653

on section [S1, S2) and F ∗(s) < min (Fmax, Pmax/v
∗(s)) on section [S3, S4), we can construct F̂ (s)654

as655

F̂ (s) =


F ∗(s)− δ+F , ∀s ∈ [S1, S2)

F ∗(s), ∀s ∈ [S0, S1) ∪ [S2, S3) ∪ [S3 + δ3, Sf ]

F ∗(s) + δ−F , ∀s ∈ [S3, S3 + δ3)

(B.4)
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where656

δ+F ∈
(
0, inf

s∈[S1,S2)
F ∗(s)

]
(B.5a)

δ3 ∈ [0, S4 − S3] (B.5b)

δ−F = inf
s∈[S3,S3+δ3)

{
min

(
Fmax,

Pmax

v∗(s)

)
− F ∗(s)

}
> 0 (B.5c)

with “inf” standing for “infimum”; δ+F in (B.5a) and δ3 in (B.5b) are constants to be determined657

later. Note that the F̂ (s) in (B.4) satisfies the force constraint (5a) because F̂ (s) = F ∗(s) − δ+F ∈658

[0, Fmax] on [S1, S2) and F̂ (s) = F ∗(s) + δ−F ∈ [Fmin, Fmax] on [S3, S3 + δ3).659

Given the F̂ (s) in (B.4), to prove Proposition 1, we need to show that there exist values δ3 ∈660

[0, S4 − S3] and δ+F ∈
(
0, infs∈[S1,S2) F

∗(s)
]
such that the new solution

(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
661

satisfies all constraints while resulting in a lower objective value. Our proof is divided into three662

stages.663

• In Stage 1, we prove that, there exist appropriate values of δ+F for (B.4), with which the664

corresponding δ3 ∈ [0, S4 − S3] for (B.4) can be found. This ensures a speed profile v̂(s)665

satisfying v̂(S1) = v∗(S1), v̂(S3 + δ3) = v∗(S3 + δ3) and v̂(s) ≤ v∗(s) for all s ∈ [S1, S3 + δ3]666

(and thus satisfying the upper speed limit constraint in (4) and the power constraint (5b) for667

all s ∈ [S1, S3 + δ3]).668

• In Stage 2, we show that there exist appropriate values of δ+F for (B.4) such that the new669

solution
(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
also satisfies the lower speed limit constraint in (4), i.e.,670

v̂(s) ≥ ϵ, the travel time constraint in (6d), and the relaxation constraint (16). This, combined671

with the results in Stage 1, indicates that the new solution
(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
is an672

alternative feasible solution of OCPR2.673

• In Stage 3, we prove that the new solution
(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
yields a lower objective674

value compared to the original solution (F ∗(s), v∗(s), E∗(s), z∗(s), t∗(s)). This by contradic-675

tion proves that the optimal solution of OCPR2 always ensures that constraint (16) holds with676

equality.677

The rigorous proof is as follows.678

Stage 1. First, consider section [S1, S2]. Given that v̂(S1) = v∗(S1) and F̂ (s) = F ∗(s)− δ+F <679

F ∗(s) for all s ∈ [S1, S2), and based on parts (i) and (iii) in Lemma 1, it follows that for all680

s ∈ [S1, S2], we have v̂(s) ≤ v∗(s) and681

Ê(s) ≥ E∗(s)− 1

m

∫ s

S1

[F ∗(ξ)− F̂ (ξ)]dξ ≥ E∗(s)− 1

m
(S2 − S1)δ

+
F (B.6)

where the second inequality follows from the fact that F ∗(s)− F̂ (s) = δ+F and S2 − S1 ≥ s− S1 for682

all s ∈ [S1, S2). Further letting s = S2 in (B.6), we have683

Ê(S2) ≥ E∗(S2)−
1

m
(S2 − S1)δ

+
F . (B.7)
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Next, consider section [S2, S3]. Since v̂(S2) ≤ v∗(S2) and F̂ (s) = F ∗(s) ∀s ∈ [S2, S3), according684

to Lemma 2, we have, for all s ∈ [S2, S3], v̂(s) ≤ v∗(s) and685

Ê(s) ≥ E∗(s)−
(
E∗(S2)− Ê(S2)

)
≥ E∗(s)− 1

m
(S2 − S1)δ

+
F (B.8)

where the second inequality holds due to (B.7). Moreover, let s = S3 in (B.8), we have686

Ê(S3) ≥ E∗(S3)−
1

m
(S2 − S1)δ

+
F . (B.9)

Finally, for section [S3, S4], according to Lemma 3, since v̂(S3) ≤ v∗(S3), if F̂ (s)−F ∗(s) = δ−F > 0687

∀s ≥ S3, then there will exist s̃ ∈
[
S3, S3 +

m
δ−F

(
E∗(S3)− Ê(S3)

)]
such that v̂(s̃) = v∗(s̃). Then δ3688

in (B.4) can be chosen as689

δ3 = min {s|s ≥ S3 & v̂(s) = v∗(s)} − S3 (B.10)

and thus v̂(s) ≤ v∗(s) ∀s ∈ [S3, S3 + δ3] according to point (ii) of Lemma 3. To guarantee that690

S3 + δ3 ≤ S4, we can require691

S3 +
m

δ−F

(
E∗(S3)− Ê(S3)

)
≤ S4 (B.11)

which can be guaranteed when δ+F satisfies692

δ+F ≤ δ−F
S4 − S3

S2 − S1
(B.12)

because if condition (B.12) holds, then by the inequality (B.9), we have693

E∗(S3)− Ê(S3) ≤
1

m
(S2 − S1)δ

+
F ≤ 1

m
(S2 − S1)δ

−
F

S4 − S3

S2 − S1
=

δ−F
m

(S4 − S3) (B.13)

and thus condition (B.11) holds.694

Summarizing the results in Stage 1, we can conclude that, given δ−F , for any δ+F satisfying695

condition (B.12), there exists a corresponding δ3 defined in (B.10) that satisfies S3 + δ3 ≤ S4, so696

F̂ (s) can be properly constructed. Also, the new solutions v̂(s) and F̂ (s) satisfy both the upper697

speed limit constraint in (4) (i.e., v̂(s) ≤ vmax(s)) and the power constraint (5b) on [S1, S3 + δ3]698

because: v̂(s) ≤ v∗(s) ≤ vmax(s) ∀s ∈ [S1, S3 + δ3], and thus according to (B.4), (B.5a), (B.5c),699

Pmax > 0 and Pmin < 0 (here we also assume v̂(s) > 0, which will be proved in Stage 2 later),700 
0 ≤ F̂ (s) < F ∗(s) ⇒ 0 ≤ F̂ (s)v̂(s) < F ∗(s)v∗(s) ≤ Pmax, s ∈ [S1, S2)

F̂ (s) = F ∗(s) ⇒ Pmin ≤ F̂ (s)v̂(s) ≤ Pmax, s ∈ [S2, S3)

F ∗(s) < F̂ (s) ≤ Pmax
v∗(s) ⇒ Pmin < F̂ (s)v̂(s) ≤ Pmax, s ∈ [S3, S3 + δ3).

(B.14)

Stage 2. In this stage, we show that, to ensure that the new solution
(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
701

satisfies the lower speed limit constraint in (4) (i.e., v̂(s) ≥ ϵ), the travel time constraint (6d) (i.e.,702
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t̂(Sf)− t̂(S0) ≤ T ) and the relaxation constraint (16) (i.e., ẑ(s) ≥ 1
v̂(s)), δ

+
F should satisfy additional703

conditions, and such a δ+F does exist.704

First, the lower speed limit constraint can be satisfied, i.e., v̂(s) ≥ ϵ for all s ∈ [S1, S3 + δ3], if705

δ+F ≤ m

S2 − S1

(
min

s∈[S1,S3+δ3]
E∗(s)− ϵ2

2

)
. (B.15)

This is because, for section [S3, S3 + δ3], substituting (B.9) into part (iii) of Lemma 3, we have, for706

all s ∈ [S3, S3 + δ3],707

Ê(s) ≥ E∗(s)−
(
E∗(S3)− Ê(S3)

)
≥ E∗(s)− 1

m
(S2 − S1)δ

+
F . (B.16)

By checking Equation (B.16) as well as Equations (B.6) and (B.8), we can see that the relation708

Ê(s) ≥ E∗(s)− 1

m
(S2 − S1)δ

+
F (B.17)

holds not just for s ∈ [S3, S3 + δ3] but also for s ∈ [S1, S2] and s ∈ [S2, S3]. Hence, it holds for all709

s ∈ [S1, S3 + δ3]. Then, if (B.15) holds, we will have710

Ê(s) ≥E∗(s)− 1

m
(S2 − S1)δ

+
F

≥E∗(s)−
[

min
s∈[S1,S3+δ3]

E∗(s)− 1

2
ϵ2
]

≥1

2
ϵ2, ∀s ∈ [S1, S3 + δ3]. (B.18)

Since v̂(s) is continuous and v̂(S1) > ϵ, so the relation Ê(s) ≥ 1
2ϵ

2 in (B.18) implies v̂(s) ≥ ϵ,711

which means that the lower speed limit constraint in (4) is satisfied. Note that there indeed exists712

a δ+F > 0 satisfying condition (B.15), because the term mins∈[S1,S3+δ3]E
∗(s)− 1

2ϵ
2 in the right-hand713

side of (B.15) is strictly positive since v∗(s) > ϵ (and thus E∗(s) > 1
2ϵ

2) holds for all s ∈ [S1, S3+δ3]714

according to Assumption 1.715

Second, we show that there exists an appropriate δ+F which can ensure that the new solution716

satisfies the travel time constraint (6d), i.e., t̂(Sf)− t̂(S0) ≤ T , and the relaxation constraint (16),717

i.e., ẑ(s) ≥ 1
v̂(s) .718

Since (F ∗(s), v∗(s), E∗(s), z∗(s), t∗(s)) is the optimal solution of OCPR2, then according to con-719

straints (14a) and (6d), we have:720 ∫ Sf

S0

z∗(s)ds = t∗(Sf)− t∗(S0) ≤ T. (B.19)

Therefore, as z∗(s) ≥ 1
v∗(s) for all s ∈ [S0, Sf] (according to constraint (16)) with the strict inequality721

holding for some s (according to the assumption we made at the beginning of the proof), we have722 ∫ Sf

S0

1

v∗(s)
ds <

∫ Sf

S0

z∗(s)ds ≤ T (B.20)

where the second inequality is from Equation (B.19).723
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In addition, from condition (B.17), we have, for all s ∈ [S1, S3 + δ3],724

Ê(s) ≥ E∗(s)− 1

m
(S2 − S1)δ

+
F ⇒ v̂(s) ≥

√
(v∗(s))2 − 2

m
(S2 − S1)δ

+
F (B.21)

and thus725 ∫ Sf

S0

1

v̂(s)
ds ≤

∫ S1

S0

1

v̂(s)
ds+

∫ Sf

S3+δ3

1

v̂(s)
ds+

∫ S3+δ3

S1

1√
(v∗(s))2 − 2

m(S2 − S1)δ
+
F

ds

=

∫ S1

S0

1

v∗(s)
ds+

∫ Sf

S3+δ3

1

v∗(s)
ds+

∫ S3+δ3

S1

1√
(v∗(s))2 − 2

m(S2 − S1)δ
+
F

ds. (B.22)

where the equality holds due to v̂(s) = v∗(s) for all s ∈ [S0, S1]∪ [S3+ δ3, Sf]. Since
∫ Sf

S0

1
v∗(s)ds < T726

according to (B.20), then there exists a sufficiently small δ+F > 0 such that the following condition727

holds,728 ∫ S1

S0

1

v∗(s)
ds+

∫ Sf

S3+δ3

1

v∗(s)
ds+

∫ S3+δ3

S1

1√
(v∗(s))2 − 2

m(S2 − S1)δ
+
F

ds < T. (B.23)

Combining Equations (B.22) and (B.23) reads729 ∫ Sf

S0

1

v̂(s)
ds < T (B.24)

Therefore, by choosing730

ẑ(s) =
1

v̂(s)
+

1

Sf − S0

(
T −

∫ Sf

S0

1

v̂(s)
ds

)
>

1

v̂(s)
(B.25)

we have, according to (14a),731

t̂(Sf)− t̂(S0) =

∫ Sf

S0

ẑ(s) =

∫ Sf

S0

[
1

v̂(s)
+

1

Sf − S0

(
T −

∫ Sf

S0

1

v̂(s)
ds

)]
ds = T (B.26)

meaning the relaxation constraint (16) and the time constraint (6d) are satisfied.732

Hence, we can conclude, there exists a sufficiently small δ+F > 0 that satisfies conditions (B.5a),733

(B.12) and (B.15), i.e.,734

0 < δ+F ≤ min

{
inf

s∈[S1,S2)
F ∗(s), δ−F

S4 − S3

S2 − S1
,

m

S2 − S1

(
min

s∈[S1,S3+δ3]
E∗(s)− ϵ2

2

)}
(B.27)

as well as condition (B.23), so that the time constraint (6d) and the relaxation constraint (16) are735

satisfied.736

Summarizing the results in Stages 1 and 2, we have that, under any δ+F > 0 satisfying conditions737

(B.23) and (B.27) above,
(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
is an alternative feasible solution of OCPR2.738

Stage 3. In this stage, we prove that the new solution
(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
yields a739

lower objective function value (denoted as Ĵ) than the original optimal objective value J∗ obtained740

from the solution (F ∗(s), v∗(s), E∗(s), z∗(s), t∗(s)).741
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For the two solutions
(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
and (F ∗(s), v∗(s), E∗(s), z∗(s), t∗(s)), inte-742

grating both sides of (13a) from S0 to Sf , respectively, we have743

mE∗(Sf) = mE∗(S0) +

∫ Sf

S0

F ∗(s)ds−
∫ Sf

S0

2c2E
∗(s)ds−

∫ Sf

S0

c1v
∗(s)ds

−
∫ Sf

S0

(c0 +mg sin(α(s))) ds (B.28a)

mÊ(Sf) = mÊ(S0) +

∫ Sf

S0

F̂ (s)ds−
∫ Sf

S0

2c2Ê(s)ds−
∫ Sf

S0

c1v̂(s)ds

−
∫ Sf

S0

(c0 +mg sin(α(s))) ds. (B.28b)

Subtracting (B.28b) from (B.28a), we further have744 ∫ Sf

S0

(
F ∗(s)− F̂ (s)

)
ds =m

(
E∗(Sf)− Ê(Sf)

)
−m

(
E∗(S0)− Ê(S0)

)
+

∫ Sf

S0

2c2

(
E∗(s)− Ê(s)

)
ds+

∫ Sf

S0

c1 (v
∗(s)− v̂(s)) ds. (B.29)

For the right-hand side of Equation (B.29), since E∗(S0) = Ê(S0), E
∗(Sf) = Ê(Sf), v

∗(s) ≥ v̂(s)745

and E∗(s) ≥ Ê(s) ∀s ∈ [S1, S3 + δ3], and v∗(s̃) > v̂(s̃) for some s̃ ∈ [S1, S3 + δ3], so we have746 ∫ Sf

S0

(
F ∗(s)− F̂ (s)

)
ds > 0 (B.30)

which, referring to the structure of F̂ (s) in (B.4), further reads747 ∫ S2

S1

(
F ∗(s)− F̂ (s)

)
ds+

∫ S3+δ3

S3

(
F ∗(s)− F̂ (s)

)
ds > 0. (B.31)

Meanwhile, for the objective values Ĵ and J∗, again referring to the structure of F̂ (s) in (B.4) and748

the expression of objective function value in (6e) and (17a), we have749

J∗ − Ĵ

=

(∫ S2

S1

F ∗(s)ds+

∫ S3+δ3

S3

max (F ∗(s), ηregF
∗(s)) ds

)
−
(∫ S2

S1

F̂ (s)ds+

∫ S3+δ3

S3

max
(
F̂ (s), ηregF̂ (s)

)
ds

)
=

∫ S2

S1

(
F ∗(s)− F̂ (s)

)
ds+

∫ S3+δ3

S3

(
max (F ∗(s), ηregF

∗(s))−max
(
F̂ (s), ηregF̂ (s)

))
ds. (B.32)

Substituting (B.31) into (B.32) yields750

J∗ − Ĵ > −
∫ S3+δ3

S3

(
F ∗(s)− F̂ (s)

)
ds+

∫ S3+δ3

S3

(
max (F ∗(s), ηregF

∗(s))−max
(
F̂ (s), ηregF̂ (s)

))
ds

=

∫ S3+δ3

S3

[(
F̂ (s)−max

(
F̂ (s), ηregF̂ (s)

))
− (F ∗(s)−max (F ∗(s), ηregF

∗(s)))
]
ds (B.33)
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For the term in the square brackets of (B.33), since F̂ (s) > F ∗(s) for all s ∈ [S3, S3 + δ3] and751

ηreg ∈ [0, 1), we have752 (
F̂ (s)−max

(
F̂ (s), ηregF̂ (s)

))
− (F ∗(s)−max (F ∗(s), ηregF

∗(s)))

=


0, if F̂ (s) > F ∗(s) ≥ 0

(1− ηreg)
(
F̂ (s)− F ∗(s)

)
> 0, if 0 ≥ F̂ (s) > F ∗(s)

(ηreg − 1)F ∗(s) > 0, if F̂ (s) > 0 > F ∗(s)

(B.34)

meaning the term in the square brackets of Equation (B.33) is always greater than or equal to zero,753

and thus J∗ − Ĵ > 0. This means Ĵ < J∗, i.e., the new solution
(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
yields754

a lower objective function value than the original solution (F ∗(s), v∗(s), E∗(s), z∗(s), t∗(s)).755

Combining the results from Stages 1 to 3, we have that, if the constraint (16) does not always756

hold with equality, i.e., z∗(s) > 1
v∗(s) for some s, then there exists a δ+F > 0 and a δ3 ∈ [0, S4 − S3]757

such that the new solution
(
F̂ (s), v̂(s), Ê(s), ẑ(s), t̂(s)

)
satisfies all constraints but can lead to a758

lower objective value. Hence, by contradiction, the optimal solution of OCPR2 always ensures that759

constraint (16) holds with equality. This proves Proposition 1.760

Appendix C. Proofs of Lemmas 1, 2 and 3761

Proof of Lemma 1. First, we prove part (i). For each location Q (including S5) on segment [S5, S6)762

that satisfies v̂(Q) = v∗(Q), we have Ê(Q) = E∗(Q) and thus 2c2Ê(Q) + c1v̂(Q) = 2c2E
∗(Q) +763

c1v
∗(Q). Then, since F̂ (Q) < F ∗(Q), according to (13a), we have764

dÊ(s)

ds

∣∣∣∣∣
s=Q

<
dE∗(s)

ds

∣∣∣∣
s=Q

. (C.1)

This means that, as Ê(s) and E∗(s) are continuous, there exists a right-neighborhood (Q,Q+ δQ]765

of Q, δQ > 0, such that for all s ∈ (Q,Q + δQ], we have Ê(s) < E∗(s). Therefore, because766

v̂(S5) = v∗(S5), we can never have Ê(s) > E∗(s) on segment [S5, S6], and we have Ê(s) ≤ E∗(s)767

∀s ∈ [S5, S6]. Combining v∗(s) > ϵ and Ê(s) ≤ E∗(s) ∀s ∈ [S5, S6], we have v̂(s) ≤ v∗(s) ∀s ∈768

[S5, S6]. This proves part (i).769

Next, we prove parts (ii) and (iii) according to the law of conservation of energy. Given any770

position s ∈ [S5, S6], by integrating both sides of (13a) from S5 to s, we have771

mE∗(s) = mE∗(S5) +

∫ s

S5

F ∗(ξ)dξ −
∫ s

S5

2c2E
∗(ξ)dξ −

∫ s

S5

c1v
∗(ξ)dξ

−
∫ s

S5

(c0 +mg sin(α(ξ))) dξ (C.2a)

mÊ(s) = mÊ(S5) +

∫ s

S5

F̂ (ξ)dξ −
∫ s

S5

2c2Ê(ξ)dξ −
∫ s

S5

c1v̂(ξ)dξ

−
∫ s

S5

(c0 +mg sin(α(ξ))) dξ. (C.2b)
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Since E∗(S5) = Ê(S5), by subtracting (C.2b) from (C.2a), we have772 ∫ s

S5

[F ∗(ξ)− F̂ (ξ)]dξ = m
(
E∗(s)− Ê(s)

)
+

∫ s

S5

2c2

(
E∗(ξ)− Ê(ξ)

)
dξ

+

∫ s

S5

c1 (v
∗(ξ)− v̂(ξ)) dξ. (C.3)

Since for all s ∈ [S5, S6), we have F ∗(s) > F̂ (s), so the left-hand side of Equation (C.3) is strictly773

greater than zero. Moreover, according to the proved part (i) in Lemma 1, we have v∗(s) ≥ v̂(s) and774

E∗(s) ≥ Ê(s) for all s ∈ [S5, S6], hence the right-hand side of Equation (C.3) is greater than or equal775

to zero. Therefore, for the equality in (C.3) to hold, there must exist some s̃ ∈ (S5, s] ⊂ (S5, S6]776

that satisfies v∗(s̃) > v̂(s̃). Part (ii) is thus proved.777

To prove part (iii), according to (C.3), v∗(s) ≥ v̂(s) and E∗(s) ≥ Ê(s) ∀s ∈ (S5, S6], we have778 ∫ s

S5

[
F ∗(ξ)− F̂ (ξ)

]
dξ ≥ m

(
E∗(s)− Ê(s)

)
, ∀s ∈ (S5, S6] (C.4)

and thus779

Ê(s) ≥ E∗(s)− 1

m

∫ s

S5

[
F ∗(ξ)− F̂ (ξ)

]
dξ. (C.5)

This proves part (iii). The whole Lemma 1 is thus proved.780

Proof of Lemma 2. Part (i) of Lemma 2 can be proved following the same logic of proving point (i)781

of Lemma 1. Thus the detailed proof is omitted.782

To prove part (ii) of Lemma 2, referring to Equations (C.2) and (C.3) in the proof of Lemma 1,783

by integrating both sides of (13a) from S5 to s and subtracting one equation from the other, and784

considering that F̂ (s) = F ∗(s) ∀s ∈ [S5, S6), we have785

Ê(s) = E∗(s) +
1

m

∫ s

S5

2c2

(
E∗(ξ)− Ê(ξ)

)
dξ +

1

m

∫ s

S5

c1 (v
∗(ξ)− v̂(ξ)) dξ −

(
E∗(S5)− Ê(S5)

)
≥ E∗(s)−

(
E∗(S5)− Ê(S5)

)
, ∀s ∈ (S5, S6]

where the inequality holds due to the proved part (i) of this lemma that v∗(s) ≥ v̂(s) and E∗(s) ≥786

Ê(s). This proves part (ii) of Lemma 2.787

Proof of Lemma 3. To prove part (i), same as in Equations (C.2) and (C.3) for proving Lemma 1,788

given an s ≥ S5, by integrating both sides of (13a) from S5 to s and subtracting one equation from789

the other, we have790

m
(
E∗(s)− Ê(s)

)
+

∫ s

S5

2c2

(
E∗(ξ)− Ê(ξ)

)
dξ +

∫ s

S5

c1 (v
∗(ξ)− v̂(ξ)) dξ

=

∫ s

S5

[
F ∗(ξ)− F̂ (ξ)

]
dξ +m

(
E∗(S5)− Ê(S5)

)
=− δ(s− S5) +m

(
E∗(S5)− Ê(S5)

)
. (C.6)
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Letting s = S5 + δ5 in (C.6), where δ5 =
m
δ

(
E∗(S5)− Ê(S5)

)
, we have791

m
(
E∗(S5 + δ5)− Ê(S5 + δ5)

)
+

∫ S5+δ5

S5

2c2

(
E∗(ξ)− Ê(ξ)

)
dξ +

∫ S5+δ5

S5

c1 (v
∗(ξ)− v̂(ξ)) dξ

=− δδ5 +m
(
E∗(S5)− Ê(S5)

)
=− δ · m

δ

(
E∗(S5)− Ê(S5)

)
+m

(
E∗(S5)− Ê(S5)

)
=0. (C.7)

Then, considering that v∗(s), v̂(s), E∗(s) and Ê(s) are continuous, and that v̂(s5) ≤ v∗(s5) and792

thus Ê(s5) ≤ E∗(s5), to make (C.7) hold, there must exist an s̃ ∈ [S5, S5+δ5] such that v̂(s̃) = v∗(s̃).793

This proves part (i).794

Part (ii) is readily proved, since v∗(s) and ṽ(s) are continuous and v̂(s) ≤ v∗(S5).795

For part (iii), since v̂(s) ≤ v∗(s) and Ê(s) ≤ E∗(s) ∀s ∈ [S5, smin] as proved, then according to796

(C.6), we have797

Ê(s) =E∗(s) +
δ

m
(s− S5)−

(
E∗(S5)− Ê(S5)

)
+

1

m

∫ s

S5

2c2

(
E∗(ξ)− Ê(ξ)

)
dξ +

1

m

∫ s

S5

c1 (v
∗(ξ)− v̂(ξ)) dξ

≥E∗(s)−
(
E∗(S5)− Ê(S5)

)
. (C.8)

This proves part (iii). The whole Lemma 3 is thus proved.798

Appendix D. The MILP for solving the classic single-train eco-driving problem799

The MILP is based on the formulation of NLPR1. Within NLPR1, there are three sets of800

nonlinear constraints: (A.1d), (A.1e) and (A.1g). To eliminate the nonlinearity in NLPR1, the801

nonlinear term 1
vk

in (A.1d) and (A.1g) (for (A.1g), Pmin ≤ Fkvk ≤ Pmax can be written equivalently802

as Pmin/vk ≤ Fk ≤ Pmax/vk) is approximated by a piecewise-linear (PWL) function, with additional803

integer variables introduced. Similarly, the quadratic term v2k in (A.1e) is approximated by another804

PWL function. Then NLPR1 can be approximated as an MILP.805

Increasing the number of linear pieces in the PWL functions can reduce the approximation error,806

but it may significantly increase the computational burden. To reduce the approximation error while807

making the problem solvable, we follow the technique introduced by Huchette and Vielma (2023)808

to linearize the above-mentioned two nonlinear terms, where the number of integer variables is only809

the logarithm of the number of linear pieces of the PWL function. This yields an MILP that can810

be solved by off-the-shelf solvers to obtain high-quality benchmark solutions.811

In detail, to approximate the function 1
vk
, given 2L+1 breakpoints

(
Uk,l,

1
Uk,l

)
, l ∈ {1, 2, · · · , 2L+812

1}, a mixed-integer formulation using a PWL function with 2L linear pieces is presented as follows:813

814

vk =
2L+1∑
l=1

αk,lUk,l (D.1a)
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fk =
2L+1∑
l=1

αk,l
1

Uk,l
(D.1b)

2L+1∑
l=1

αk,l = 1 (D.1c)

αk,l ≥ 0 l ∈ {1, 2, · · · , 2L + 1} (D.1d)

αk,l ∈ SOS2 l ∈ {1, 2, · · · , 2L + 1} (D.1e)

where αk,l are weighting parameters. The SOS2 constraint in (D.1e) states that at most two αk,l,815

l ∈ {1, 2, · · · , 2L + 1}, can be non-zero, and if two are non-zero their indices l must be consecutive.816

For our numerical experiments in Section (6.1), we choose Uk,l = ϵ+ (l − 1) (vmax,k − ϵ) /2L.817

Similarly, the function v2k is approximated using another PWL function. Given 2L̆+1 breakpoints818 (
Ŭk,l̆, Ŭ

2
k,l̆

)
, l̆ ∈ {1, 2, · · · , 2L̆+1}, a mixed-integer formulation to approximate the function v2k using819

the PWL function is presented as:820

vk =
2L̆+1∑
l̆=1

γk,l̆Ŭk,l̆ (D.2a)

f̆k =

2L̆+1∑
l̆=1

γk,l̆Ŭ
2
k,l̆

(D.2b)

2L̆+1∑
l̆=1

γk,l̆ = 1 (D.2c)

γk,l̆ ≥ 0 l̆ ∈ {1, 2, · · · , 2L̆ + 1} (D.2d)

γk,l̆ ∈ SOS2 l̆ ∈ {1, 2, · · · , 2L̆ + 1}. (D.2e)

For our numerical experiments in Section (6.1), we choose L̆ = L and Ŭk,l̆ = Uk,l.821

With the above linearizations, the NLPR1 is approximated to the following MILP:822

min

N−1∑
k=0

F+
k ∆sk (D.3a)

s.t.
tk+1 − tk

∆sk
= fk (D.3b)

Ek = f̆k (D.3c)

Pminfk ≤ Fk ≤ Pmaxfk (D.3d)

(A.1b), (A.1f), (A.1h)–(A.1n), (D.1), (D.2). (D.3e)
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